
UNIVERSITY OF CALIFORNIA

Los Angeles

Data Storage Considered Modular

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Michael D. Mammarella

2010

c© Copyright by

Michael D. Mammarella

2010

The dissertation of Michael D. Mammarella is approved.

Lixia Zhang

Richard R. Muntz

Bruce L. Rothschild

Edward W. Kohler, Committee Chair

University of California, Los Angeles

2010

ii

TABLE OF CONTENTS

1 Introduction 1

2 Featherstitch 5

2.1 Featherstitch Introduction . 8

2.2 Related Work . 10

2.3 Patches . 14

2.3.1 Disk Behavior . 14

2.3.2 Dependencies . 16

2.3.3 Dependency Implementation . 17

2.3.4 Examples . 19

2.3.5 Patch Implementation . 22

2.3.6 Optimizations . 23

2.3.7 Discussion . 24

2.3.8 Debugging . 25

2.4 Modules . 26

2.4.1 UHFS . 27

2.4.2 ext2, UFS, and waffle . 28

2.4.3 Journal . 29

2.4.4 Buffer Cache . 31

2.4.5 Loopback . 33

iii

2.5 Patchgroups . 34

2.5.1 Interface and Implementation 35

2.5.2 Case Studies . 37

2.6 Implementation . 38

2.7 Evaluation . 39

2.7.1 Methodology . 40

2.7.2 Benchmarks and Linux Comparison 41

2.7.3 Correctness . 43

2.7.4 Patchgroups . 43

2.7.5 Evaluation Summary . 45

2.8 Summary . 46

3 Anvil 48

3.1 Anvil Introduction . 50

3.2 Related Work . 52

3.3 Design . 55

3.3.1 dTables . 55

3.3.2 Data Unification . 58

3.3.3 Columns . 60

3.3.4 Discussion . 61

3.4 Transaction Library . 63

3.4.1 Consistency . 63

3.4.2 Durability . 67

3.4.3 System Journal . 69

3.5 dTables . 70

3.5.1 Basic Storage dTables . 70

iv

3.5.2 Performance dTables . 72

3.5.3 Unifying dTables . 74

3.5.4 Specialized dTables . 79

3.5.5 Exception dTable . 82

3.5.6 Existential dTable . 83

3.5.7 Example Configurations . 83

3.6 Abortable and ACID Transactions . 86

3.6.1 Concurrent Access . 89

3.7 Evaluation . 90

3.7.1 Conventional Workload . 90

3.7.2 Microbenchmarks . 92

3.7.3 Nonexistent Values . 96

3.7.4 Reconfiguring Anvil . 99

3.7.5 Digesting and Combining . 102

3.7.6 Abortable Transactions . 105

3.7.7 ACID Transactions . 106

3.7.8 Consistency and Durability Tests 107

3.8 Summary . 109

4 Conclusion 110

References 113

v

LIST OF FIGURES

2.1 Patch notation . 16

2.2 Example patch arrangements for an ext2-like file system 18

2.3 A running Featherstitch configuration 33

2.4 Patchgroup lifespan . 35

2.5 How patchgroups are implemented in terms of patches 37

2.6 Featherstitch benchmark results . 42

2.7 Patchgroup-enabled IMAP server benchmark 45

3.1 Simplified pseudocode for the dTable interface 56

3.2 Simplified pseudocode for the array dTable’s create method 57

3.3 Relationships between a managed dTable and the dTables it uses 59

3.4 A simplified, pseudocode version of the cTable interface 60

3.5 Patchgroups used to implement an Anvil transaction 65

3.6 Summary of dTables . 68

3.7 Nonexistent values in dTable overlays 78

3.8 A simple dTable graph for storing U.S. states efficiently 85

3.9 An improved dTable graph for storing U.S. states efficiently 85

3.10 An example cTable storing differentially timestamped log entries 87

3.11 Results from running the DBT2 test suite 92

3.12 Exception dTable microbenchmark . 93

vi

3.13 Overlay dTable microbenchmark . 94

3.14 Partition dTable microbenchmark . 95

3.15 Bloom filter dTable microbenchmark . 96

3.16 Effect of nonexistent values . 98

3.17 Time to select columns from row and column stores 100

3.18 Sliding window dTable benchmark . 101

3.19 Rows inserted per second to load TPC-H data 103

3.20 Rows inserted per second to load TPC-H data, foreground digests 103

3.21 Thread-safety overheads for TPC-H load 104

3.22 Comparison of Anvil’s basic and abortable transactions 105

3.23 Performance of Anvil’s ACID transaction dTable 107

vii

ACKNOWLEDGMENTS

Many people have helped me in the long journey towards the completion of this disserta-

tion; surely any list I might come up with would accidentally omit someone. Nevertheless

I would like to specifically acknowledge just a few of them here, for their outstanding sup-

port. My advisor Eddie Kohler has been a wonderful influence on my graduate career, and

without him it would have been a very different, probably much less special, experience.

In many ways he was just the advisor I needed, with the right combination of research

interests, personality, and involvement in my work; he was there when I wanted his ad-

vice, and conveniently absent when I was less inclined to do any work. I would also like

to acknowledge the many members of my lab, with whom I not only worked on actual

research but also enjoyed many hours tinkering with hardware, software, ideas, and lab

pets not quite as related to the work we were supposed to be doing. Finally, I would like

to thank my parents, for only having asked a few times when I was going to graduate, and

my loving wife, Christina, for so patiently waiting for me to do so.

Chapter 2 is a revision of “Generalized File System Dependencies,” published in the

Proceedings of the 2007 ACM Symposium on Operating Systems Principles (SOSP),

c©ACM, 2007. It is joint work done with Chris Frost, Eddie Kohler, Andrew de los Reyes,

Shant Hovsepian, Andrew Matsuoka, and Lei Zhang, and was supported by the National

Science Foundation, Microsoft Research, and Intel.

Chapter 3 is a revision of “Modular Data Storage with Anvil,” published in the Pro-

ceedings of the 2009 ACM Symposium on Operating Systems Principles (SOSP), c©ACM,

viii

2009. It is joint work done with Shant Hovsepian and Eddie Kohler, and was supported

by the National Science Foundation, Microsoft Research, the Alfred P. Sloan Foundation,

and Intel.

ix

VITA

1982 Born, Stoneham, Massachusetts

2000–2003 Chancellor’s Scholarship
University of Massachusetts, Amherst

2004 Bachelor of Science,
Computer Science and Mathematics
University of Massachusetts, Amherst

2004–2005 Departmental Fellowship
Computer Science Department
University of California, Los Angeles

2005–2006 Teaching Assistant
Computer Science Department
University of California, Los Angeles

2006 Master of Science, Computer Science
University of California, Los Angeles

2005-2010 Graduate Research Assistant
Eddie Kohler, Computer Science Department
University of California, Los Angeles

x

PUBLICATIONS

de los Reyes, A., Frost, C., Kohler, E., Mammarella, M., and Zhang, L. 2005. The KudOS
Architecture for File Systems. Work in progress session, Twentieth ACM Symposium on
Operating Systems Principles. (Brighton, United Kingdom, October 23-26, 2005). SOSP
05. ACM, New York, NY.

Frost, C., Mammarella, M., Kohler, E., de los Reyes, A., Hovsepian, S., Matsuoka, A., and
Zhang, L. 2007. Generalized File System Dependencies. In Proceedings of the Twenty-
First ACM Symposium on Operating Systems Principles (Stevenson, Washington, October
14-17, 2007). SOSP 07. ACM, New York, NY, 307–320.

Mammarella, M., Hovsepian, S., and Kohler, E. 2009. Modular Data Storage with Anvil.
In Proceedings of the Twenty-Second ACM Symposium on Operating Systems Principles
(Big Sky, Montana, October 11-14, 2009). SOSP 09. ACM, New York, NY, 147–160.

xi

ABSTRACT OF THE DISSERTATION

Data Storage Considered Modular

by

Michael D. Mammarella

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2010

Professor Edward W. Kohler, Chair

Modularity is used in many software systems to increase code readability and reusabil-

ity; it also brings additional configurability and extensibility. This dissertation focuses on

layered modularity: systems divided into fine-grained, interacting modules. A layered sys-

tem builds desired behavior from the combination of simple feature modules, making it

easy for users to change behavior by layering modules or writing new ones. Despite the

benefits of this sort of modularity, data storage systems, and in particular file systems

and databases, are generally not designed in this way. For instance, existing systems can-

not simply add metadata journaling to an arbitrary file system by connecting a journaling

module to it; neither can they add on-disk data compression to an arbitrary database table

format by connecting a compression module. One primary reason for this inflexibility may

lie in the difficulty of achieving consistency in layered modules without harming perfor-

mance. Consistency, in this context, is the property that the data on stable storage is at all

times in a “good” state, for some definition of “good.”

xii

This work investigates two major types of data storage software systems, file systems

and databases, and explores ways in which each can be made more modular while pre-

serving the essential property of consistency. Two different approaches are taken: first, in

a new file system implementation architecture, a new first-class object is introduced that

allows modules to communicate write ordering requirements between each other while

remaining only loosely coupled. Second, in a new database back end, all writing in the

system is isolated to a small handful of dedicated modules, allowing most modules to deal

exclusively with read-only data and to themselves be divided into read-only and create-

only parts. These approaches have both been successful, and can even offer performance

benefits by giving users and system designers more flexibility and control over their data.

These prototype systems demonstrate that storage systems can be decomposed into

layered modular components while sacrificing neither consistency nor performance. This

modularity also makes them much easier to reconfigure and customize, providing perfor-

mance improvements and useful new features with minimal incremental effort.

xiii

Chapter 1

Introduction

Modularity is used in many software systems to increase code readability and reusability;

it also brings additional configurability and extensibility. Dividing a large software system

into appropriate modules can make new functionality easier to write, bugs easier to find,

and development easier to parallelize. A system divided into fine-grained modules, each

providing an optional feature, can make it easy for users to build desired configurations by

layering modules together, and to add additional features by writing new modules.

Despite the benefits of this sort of modularity, data storage systems, and in particular

file systems and databases, are generally not designed in this way. Most operating systems,

while allowing each file system format to be implemented as a module so that several may

coexist, provide no mechanism for finer-grained modularity. Features that in principle can

be made independent of the file system format, like journaling, extended attributes, or

user-controlled write ordering, are generally integrated into each file system format, if

present at all. Databases are similar in design: many database management systems allow

for selectable back ends, like MySQL’s “storage engines,” but each table can use only

one back end. Features that could be separated, like data compression or other storage

optimizations, must be integrated into the storage engines, and not every storage engine

1

provides every feature. As a result, when choosing a file system or database storage engine,

it is often necessary to prioritize desired features and pick the option that most closely

meets the application’s needs even though it may not meet them all. With more modular

data storage systems, it might instead be possible to build exactly the desired system by

layering together feature-providing modules.

In both of these cases, I believe that a primary reason existing systems are not more

modular lies in the difficulty of achieving consistency in a modular way. Consistency, in

this context, is the property that the data on stable storage is at all times in a “good” state,

for some definition of “good.” For instance, for a file system, consistency means that the

file system can be used right away after recovering from an unclean shutdown, requiring

at most a fast recovery procedure. (That is, a full file system check is not required, or can

be safely postponed.) In a monolithic design, all consistency requirements are taken into

account by the designer and implemented throughout the code by carefully controlling the

order in which data is written to stable storage. This can be both a privilege and a burden,

as the entire system both can and must be analyzed as a whole to implement that system

correctly; for large, complex systems, this can easily lead to subtle bugs. For example,

existing file systems do not correctly support storing a journaled file system in a file inside

another file system: the carefully-controlled write ordering requirements of the nested file

system are ignored by the outer file system as mere data writes. While each file system may

be correct by itself, the “entire system” in this configuration is the combination of both,

and the original analyses no longer apply. Despite the potential data loss consequences,

nested file systems like this are increasingly popular, and are used to implement features

like encrypted home directories in Mac OS X. Nevertheless, more modular designs that

would correctly support this layering are difficult to achieve: the layered modules must

cooperate to provide consistency, yet still be independent enough to reap the benefits of

modularity.

2

My thesis is that data storage systems, and in particular file systems and database

back ends, can be decomposed into modular components without substantial performance

penalties; further, that doing so can dramatically increase the potential of these systems

to be reconfigured and customized, providing performance improvements or useful new

features with minimal incremental effort. In particular, I will show that efficient alterna-

tives to synchronous disk access exist for such modular designs, while still providing the

necessary semantics and the full benefits of modularity.

In Chapter 2, I describe Featherstitch, a file system implementation framework allow-

ing many file system features to be implemented as separate modules, and explain the

enabling mechanisms underlying its design. In particular, a new first-class object allows

modules to communicate write ordering requirements between each other in a file-system-

agnostic manner. I argue that the modularity thus gained comes with low overhead, and

provides useful new features (both for file system implementors and application develop-

ers) as well as performance improvements in some cases. Featherstitch runs in the Linux

kernel and supports several file systems and multiple different techniques for providing

consistency. It has performance on par with native Linux file system implementations pro-

viding similar mechanisms, while supporting additional features like correctly nested file

systems and user-specified write orderings.

In Chapter 3, I describe Anvil, a back-end storage system for a database composed

of fine-grained modules which process and store data, and present many such modules

from which a wide variety of different storage strategies can be built. To avoid consis-

tency issues, most modules deal with read-only data (which has very simple consistency

requirements), and are themselves divided into parts that access read-only data stores and

parts that create those stores. I argue that, again, this modularity comes with low overhead,

and allows the system to be easily reconfigured (by arranging existing modules) and cus-

tomized (by writing new modules) to provide performance improvements. For instance,

3

replacing the original B-tree-based back end in SQLite with Anvil can improve perfor-

mance by up to a factor of 5.3 on a “conventional” workload, and Anvil can be configured

to provide additional improvements for more specialized data and workloads.

The contributions of this dissertation include:

• the module system designs in Featherstitch and Anvil;

• several specific core modules in each that perform functions important for overall

system functionality or performance;

• new abstractions in these systems that allow the modules to work together while

remaining compartmentalized;

• the new functionality thus enabled, like exporting dependency specification to userspace

in Featherstitch;

• and the discovery that systems like these can be built without substantial perfor-

mance penalty, as evidenced by the prototypes themselves.

These two systems demonstrate that, indeed, modularity need not be eschewed in the

design of file systems and database back ends for performance reasons. In fact, in both sys-

tems it provides new opportunities for performance improvements, while simultaneously

making the designs simpler to understand, customize, and configure.

4

Chapter 2

Featherstitch

In this chapter, I describe Featherstitch, a modular file system framework allowing many

file system features to be implemented as separate components. The primary mechanism

enabling this modularity in Featherstitch is the patch, a first-class object representing a

change to a cached disk block along with a set of dependencies on other patches. Through

patches, modules can make their own changes to disk blocks, examine the changes made

by other modules, or even modify the dependencies of those changes. Patches separate the

specification of required disk write orderings from their enforcement, and allow loosely-

coupled modules to accomplish tasks that would otherwise require close cooperation.

There are significant benefits to be gained by decomposing file system implementa-

tions into modules. For instance, features like journaling can be implemented generically,

and added to any file system by connecting the modules together. Features like simulated

extended attributes, or other metadata not supported by the underlying file system format,

could also be written as separate modules. (Mac OS X, for example, simulates resource

forks and other metadata like the source URL of downloaded files when it writes files

to FAT file systems.) Both of these examples come with specific ordering requirements:

journal logs and commit records must be written before file system updates, and hidden

5

files storing simulated metadata must be updated at appropriate times relative to the files

whose metadata they store. Existing systems must integrate these kinds of features into

their monolithic file system implementations.

Another benefit of this design is that dependency enforcement can be localized into a

dedicated module – the buffer cache. In Featherstitch, the buffer cache bases its decisions

on which blocks to write, and when, on the structure of patch dependencies, ensuring that

blocks are written to disk in an acceptable order. This frees other modules of this responsi-

bility, allowing them to focus only on specifying the dependencies in the first place. With

a “dumb” buffer cache whose writes to the disk can be controlled only by pinning pages

into memory, the buffer cache must be micromanaged by other system components.

Patches and the separation of dependency specification and enforcement also make

it possible to nest consistent file systems, and to extend dependency specification into

userspace. Several operating systems support using a file stored in one file system as the

“disk” on which another file system is stored; in Linux, the loopback driver allows such

files to appear as block devices (“disks”). Existing storage systems treat the nested file

system’s block writes as merely application updates to the contents of a file in another file

system – and, as a result, important ordering requirements may be lost and then violated. In

Featherstitch, the nested file system’s ordering requirements are represented using patches,

which pass through the loopback module intact. Many applications also have consistency

requirements similar to those that a file system or file system extension might require, but

currently have only rudimentary APIs for making sure these requirements are fulfilled. In

general, these APIs provide consistency only by providing durability; that is, by forcing

immediate and synchronous disk writes of the requested data. In Featherstitch, these cus-

tom application consistency requirements can be directly communicated to the kernel’s

buffer cache, and enforced without application micromanagement.

The contributions of this work are the patch model and module system designs, the

6

patchgroup mechanism that exports patches to applications, and several individual Feath-

erstitch modules, such as the journal and buffer cache.

There were several notable challenges in developing Featherstitch. It took several itera-

tions to refine the patch API to support rearranging existing patches, as the journal module

does, while remaining efficient. The more invariants we could guarantee about patches,

the more optimization opportunities became available – but enforcing too many invariants

would restrict the API and make it not flexible enough for some modules. Likewise, we

had to strike the right balance of power and safety in the userspace-visible patchgroup

interface. Here, we had to be more restrictive, since we cannot count on the behavior of

arbitrary user processes, but we still wanted to provide the maximum level of functionality

while protecting the kernel. Another challenge was working with Linux’s disk subsystem

and on-disk caches to preserve the required block write orderings all the way to the physi-

cal disk media. Both Linux’s disk scheduler (even, it turns out, the “no-op” scheduler) and

on-disk write-back caches may reorder writes; changing that property can be anywhere

from impossible to merely performance-degrading. Instead, we designed Featherstitch to

work with these systems as they are, yet still without substantial performance penalties.

Featherstitch is joint work with Chris Frost, Eddie Kohler, Andrew de los Reyes, Shant

Hovsepian, Andrew Matsuoka, and Lei Zhang. I designed most of its module system and

introduced the patch concept. In practice, many optimizations are necessary for the system

to be practical; these were mostly written by Chris Frost and will be part of his dissertation.

Our paper on Featherstitch was published in SOSP 2007 [14], and work on the system is

now complete.

7

2.1 Featherstitch Introduction

Write-before relationships, which require that some changes be committed to stable stor-

age before others, underlie every mechanism for ensuring file system consistency and re-

liability from synchronous writes to journaling. (Journaling logs a set of intended changes

before committing the changes, so that the changes become durable atomically even if the

system crashes.) Featherstitch is a complete storage system1 built on a concrete form of

these relationships: a simple, uniform, and file system agnostic data type called the patch.

Featherstitch’s API design and performance optimizations make patches a promising im-

plementation strategy as well as a useful abstraction. In particular, they allow the storage

system to be decomposed into pluggable modules, each of which may produce, consume,

examine, and modify patches to perform its function as part of the system.

A patch represents both a change to disk data and any dependencies that change has on

other changes. Patches were initially inspired by BSD’s soft updates dependencies [16],

but whereas soft updates implement a particular type of consistency and involve many

structures specific to the UFS file system [29], patches are fully general, specifying only

how a range of bytes should be changed. This lets file system implementations specify a

write-before relationship between changes without dictating a write order that honors that

relationship. It lets storage system components examine and modify dependency structures

independent of the file system’s layout, possibly even changing one type of consistency

into another. It also lets applications modify patch dependency structures, thus defining

consistency policies for the underlying storage system to follow.

Since patches form a sort of “common language” among all the modules in the sys-

1In this chapter, we use the term “storage system” to refer to the software layer that implements file
system services in an operating system. This helps to distinguish it from the term “file system,” which we
use to refer to individual (named) on-disk data layouts, and the specific modules within storage systems that
implement them.

8

tem, most modules are compatible with most other modules and applications, allowing

file system extensions and applications to work with many different file systems. File sys-

tem implementers already find it difficult to provide consistency guarantees [29, 60] and

implementations are often buggy [68, 69], a situation further complicated by file system

extensions and special disk interfaces [10, 31, 39, 45, 47, 49, 66]. File system extension

techniques such as stackable file systems [19, 41, 70, 71] leave consistency up to the un-

derlying file system; any extension-specific ordering requirements are difficult to express

at the VFS [23] layer. Although maintaining file system correctness in the presence of

failures is increasingly a focus of research [12, 46], other proposed systems for improving

file system integrity differ mainly in the kind of consistency they aim to impose, ranging

from metadata consistency to full data journaling and full ACID transactions [15, 26, 65].

Some users, however, implement their own end-to-end reliability for some data and prefer

to avoid any consistency slowdowns in the file system layer [63]. Patches can represent all

these choices, and since they provide a common language for file systems and extensions

to discuss consistency requirements, even combinations of consistency mechanisms can

comfortably coexist.

Applications likewise have few mechanisms for controlling buffer cache behavior in

today’s systems, and robust applications, including databases, mail servers, and source

code management tools, must choose between several mediocre options. They can accept

the performance penalty of expensive system calls like fsync and sync, which request

that the storage system fall back to slow synchronous writes, or use tedious and fragile

sequences of operations that assume particular file system consistency semantics. Patch-

groups, our example user-level patch interface, export to applications some of patches’

benefits for kernel file system implementations and extensions. Modifying an IMAP mail

server to use patchgroups required only localized changes, which were implemented by

Chris Frost. The result both meets IMAP’s consistency requirements on any reasonable

9

patch-based file system and avoids the performance hit of full synchronization.

Production file systems use system-specific optimizations to achieve consistency with-

out sacrificing performance; we had to improve performance in a general way. A naı̈ve

patch-based storage system scaled terribly, spending far more space and time on depen-

dency manipulation than conventional systems. However, optimizations reduced patch

memory and CPU overheads significantly. Room for improvement remains, particularly

in system time, but Featherstitch outperforms equivalent Linux configurations on many of

our benchmarks; it is at most 30% slower on others.

In this chapter, we describe patches abstractly, state their behavior and safety proper-

ties, and give examples of their use. We then describe the Featherstitch implementation,

showing how it is decomposed into modules, and present several of the more interesting

and useful modules. Finally, our evaluation compares Featherstitch and Linux-native file

system implementations.

2.2 Related Work

Storage systems have often employed some form of modularity at least since the introduc-

tion of VFS [23], which made it possible to abstract the implementation of a file system

from the interface to it. This allows multiple different file system drivers to coexist in

the same kernel, but it leaves each file system driver as a monolithic entity. Some produc-

tion systems, like Linux’s JBD [60], make specific other features somewhat more modular:

JBD is theoretically a file system agnostic journaling layer despite being used only by ext3.

(It requires specific support to be added to each file system using it.) Other, and generally

more experimental, systems have gone further, proposing stackable module software for

file systems [19, 41, 48, 66, 67, 70, 71] that allows additional functionality to be layered on

top of monolithic file system implementations. Featherstitch continues this line of work,

10

and, by introducing patches, makes the implementations themselves divisible into smaller

pieces. It also allows stacked features greater control of the way data is written to disk,

making more kinds of features safe to implement this way.

Most modern file systems protect file system integrity in the face of possible power

failure or crashes via journaling, which groups operations into transactions that commit

atomically [44]. The content and the layout of the journal vary in each implementation,

but in all cases, the system can use the journal to replay (or roll back) any transactions that

did not complete due to the shutdown. A recovery procedure, if correct [68], avoids time-

consuming file system checks on post-crash reboot in favor of simple journal operations.

Soft updates [16] are another important mechanism for ensuring post-crash consis-

tency. Carefully managed write orderings avoid the need for synchronous writes to disk

or duplicate writes to a journal; only relatively harmless inconsistencies, such as leaked

blocks, are allowed to appear on the file system. As in journaling, soft updates can avoid

scanning the file system after a crash to detect inconsistencies, although the file system

must still be scanned in the background to recover leaked storage.

Patches naturally represent both journaling and soft updates, which we use as run-

ning examples throughout this chapter. In each case, our patch implementation extracts

ad hoc orderings and optimizations into general dependency graphs, making the order-

ings potentially easier to understand and modify. Soft updates are in some ways a more

challenging test of the patch abstraction: their dependencies are more variable and harder

to predict, they are widely considered difficult to implement, and the existing FreeBSD

implementation is quite optimized [29]. We therefore frequently discuss soft updates-like

dependencies. This should not be construed as a wholesale endorsement of soft updates,

which rely on a property (atomic block writes) that many disks do not provide, and which

often require more seeks than journaling despite writing less data.

While journaling and soft updates are the most common file system consistency mech-

11

anisms currently in use, patches were designed to represent any write-before relationship.

In Section 2.4.2, we present a module that uses patches to implement shadow paging-style

techniques as found in write anywhere file layouts [20]; other arrangements, like ACID

transactions [65], should also be possible.

CAPFS [62] and Echo [28] considered customizable application-level consistency pro-

tocols in the context of distributed, parallel file systems. CAPFS allows application writers

to design plug-ins for a parallel file store that define what actions to take before and after

each client-side system call. These plug-ins can enforce additional consistency policies.

Echo maintains a partial order on the locally cached updates to the remote file system,

and guarantees that the server will store the updates accordingly; applications can extend

the partial order. Both systems are based on the principle that not providing the right con-

sistency protocol can cause unpredictable failures, yet enforcing unnecessary consistency

protocols can be extremely expensive. Featherstitch patchgroups generalize this sort of

customizable consistency and bring it to disk-based file systems.

A similar application interface to patchgroups is explored in Section 4 of Burnett’s

dissertation [7]. However, the methods used to implement the interfaces are very differ-

ent: Burnett’s system tracks dependencies among system calls, associates dirty blocks

with unique IDs returned by those calls, and duplicates dirty blocks when necessary to

preserve ordering. Featherstitch tracks individual changes to blocks internally, allowing

kernel modules a finer level of control, and only chooses to expose a userspace interface

similar to Burnett’s as a means to simplify the sanity checking required of arbitrary user-

submitted requests. Additionally, our evaluation uses a real disk rather than trace-driven

simulations.

Dependencies have been used in BlueFS [34] and xsyncfs [35] to reduce the aggre-

gate performance impact of strong consistency guarantees. Xsyncfs’s external synchrony

provides users with the same consistency guarantees as synchronous writes. Application

12

writes are not synchronous, however. They are committed in groups using a journaling de-

sign, but additional write-before relationships are enforced on non-file system communi-

cation: a journal transaction must commit before output from any process involved in that

transaction becomes externally visible via, for example, the terminal or a network con-

nection. Dependency relationships are tracked across IPC as well. Featherstitch patches

could be used to link file system behavior and xsyncfs process dependencies, or to define

cross-network dependencies as in BlueFS; this would remove, for instance, xsyncfs’s re-

liance on ext3. Conversely, Featherstitch applications could benefit from the combination

of strict ordering and nonblocking writes provided by xsyncfs.

Systems developed after Featherstitch have also realized the benefits of making the

buffer cache aware of dependencies. For instance, Valor [50] provides transactional se-

mantics at the file system level, but based on experience from previous systems, strives to

modify the kernel as little as possible. Nevertheless, one of its two key kernel modifications

is adding a simple form of dependencies to the kernel’s buffer cache.

Some systems have generalized a single consistency mechanism. Linux’s JBD, as men-

tioned above, is theoretically a reusable journaling layer suitable for use by any file system;

however, the only file system that uses it is the one for which it was designed. XN enforces

a variant of soft updates on any associated library file system, but still requires that those

file systems implement soft updates again themselves [21].

Featherstitch adds to this body of work by designing a primitive that generalizes and

makes explicit the write-before relationship present in many storage systems, and imple-

menting a storage system in which that primitive is pervasive throughout. This allows

Featherstitch’ modules to be finer-grained, while layered, modular file system features can

be implemented more safely; it also allows the extension of this primitive into userspace

for use by applications.

13

2.3 Patches

Every change to stable storage in a Featherstitch system is represented by a patch. This

section describes the basic patch abstraction and our implementation of that abstraction.

2.3.1 Disk Behavior

We first describe how disks behave in our model, and especially how disks commit patches

to stable storage. Although our terminology originates in conventional disk-based file sys-

tems with uniformly-sized blocks, the model would apply with small changes to file sys-

tems with non-uniform blocks and to other media, including RAID and network storage.

We assume that stable storage commits data in units called blocks. All writes affect

one or more blocks, and it is impossible to selectively write part of a block. In disk terms,

a block is a sector or, for file system convenience, a few contiguous sectors.

A patch models any change to block data. Each patch applies to exactly one block,

so a change that affects n blocks requires at least n patches to represent. Each patch is

either committed, meaning written to disk; uncommitted, meaning not written to disk; or

in flight, meaning in the process of being written to disk. The intermediate in-flight state

models reordering and delay in lower storage layers; for example, modern disks often

cache writes to add opportunities for disk scheduling. Patches are created as uncommitted.

The operating system moves uncommitted patches to the in-flight state by writing their

blocks to the disk controller. Some time later, the disk writes these blocks to stable storage

and reports success. When the operating system receives this acknowledgment, it commits

the relevant patches. Committed patches stay committed permanently, although their ef-

fects can be undone by subsequent patches. The sets C, U, and F represent all committed,

uncommitted, and in-flight patches, respectively.

Patch p’s block is written blk[p]. Given a block B, we write CB for the set of committed

14

patches on that block, or in notation CB = {p ∈ C | blk[p] = B}. FB and UB are defined

similarly.

Disk controllers in this model write in-flight patches one block at a time, choosing

blocks in an arbitrary order. In notation:

1. Pick some block B with FB 6= ∅.

2. Write block B and acknowledge each patch in FB.

3. Repeat.

Disks perform better when allowed to reorder requests, so storage systems try to keep

many blocks in flight. A block write will generally put all of that block’s uncommitted

patches in flight, but a storage system may, instead, write a subset of those patches, leaving

some of them in the uncommitted state. As we will see, this is sometimes required to

preserve write-before relationships.

We intentionally do not specify whether the underlying persistent storage device (e.g.,

the disk) writes blocks atomically. Some file system designs, such as soft updates, rely

on block write atomicity, where if the disk fails while a block B is in flight, B contains

either the old data or the new data on recovery. Many journal designs do not require this,

and include recovery procedures that handle in-flight block corruption – for instance, if

the memory holding the new value of the block loses coherence before the disk stops

writing [58]. Since patches model the write-before relationships underlying these journal

designs, patches do not provide block atomicity themselves, and a patch-based file system

with soft updates-like dependencies should be used in conjunction with a storage device

that provides block atomicity.

15

p a patch
blk[p] patch p’s block

C,U,F the sets of all committed, uncommitted, and in-flight
patches, respectively

CB,UB,FB committed/uncommitted/in-flight patches on block B

q p q depends on p (p must be written before q)
dep[p] p’s dependencies: {x | p x}
q → p q directly depends on p

(q p means either q → p or ∃x : q x → p)
ddep[p] p’s direct dependencies: {x | p → x}

Figure 2.1: Patch notation.

2.3.2 Dependencies

A patch-based storage system implementation represents write-before relationships using

an explicit dependency relation. The disk controller and lower layers don’t understand de-

pendencies; instead, the storage system maintains dependencies and passes blocks to the

controller in an order that preserves dependency semantics. Patch q depends on patch p,

written q p, when the storage system must commit q either after p or at the same time

as p. (Patches can be committed simultaneously only if they are on the same block.) A file

system should create dependencies that express its desired consistency semantics. For ex-

ample, a file system with no durability guarantees might create patches with no dependen-

cies at all; a file system wishing to strictly order writes might set pn pn−1 · · · p1.

Circular dependencies among patches cannot be resolved and are therefore errors. For ex-

ample, neither p nor q could be written first if p q p. (Although a circular dependency

chain entirely within a single block would be acceptable, Featherstitch treats all circular

chains as errors.) Patch p’s set of dependencies, written dep[p], consists of all patches on

which p depends: dep[p] = {x | p x}. Given a set of patches P, we write dep[P] to mean

the combined dependency set
⋃

p∈P dep[p].

The disk safety property formalizes dependency requirements by stating that the de-

16

pendencies of all committed patches have also been committed:

dep[C]⊆ C.

Thus, no matter when the system crashes, the disk is consistent in terms of dependencies.

Since, as described above, the disk controller can write blocks in any order, a Featherstitch

storage system must also ensure the independence of in-flight blocks. This is precisely

stated by the in-flight safety property:

For any block B, dep[FB]⊆ C∪FB.

This implies that dep[FB]∩ dep[FB′] ⊆ C for any B′ 6= B, so the disk controller can write

in-flight blocks in any order and still preserve disk safety. To uphold the in-flight safety

property, the buffer cache must write blocks as follows:

1. Pick some block B with UB 6= ∅ and FB = ∅.

2. Pick some P ⊆ UB with dep[P]⊆ P∪C.

3. Move each p ∈ P to F (in-flight).

The requirement that FB = ∅ ensures that at most one version of a block is in flight at any

time. Also, the buffer cache must eventually write all dirty blocks, a liveness property.

2.3.3 Dependency Implementation

The write-before relationship is transitive, so if r q and q p, there is no need to

explicitly store an r p dependency. To reduce storage requirements, a Featherstitch

implementation maintains a subset of the dependencies called the direct dependencies.

Each patch p has a corresponding set of direct dependencies ddep[p]; we say q directly

17

d

i

i0

b

bitmap block

inode block

data block

alloc block

clear data

attach block

set size

d

i

i0

b

i2

b2

bitmap block

inode block

data block

alloc
free

block

clear data

attach

size

erase
inode

cmtcmt

dJ iJ

bJ

JOURNAL

journaled
data block

journaled
inode block

journaled
bitmap block

commit/completion
record

bitmap block

inode block

data block

cmp

b

i

i0

d

alloc block

clear data

attach

size

a) Adding a block (soft updates) b) . . . plus removing a file c) Adding a block (journaling)

Figure 2.2: Example patch arrangements for an ext2-like file system. Circles represent
patches, shaded boxes represent disk blocks, and arrows represent direct dependencies.
a) A soft updates order for appending a zeroed-out block to a file. b) A different file on
the same inode block is removed before the previous changes commit, inducing a circular
block dependency. c) A journal order for appending a zeroed-out block to a file.

depends on p, and write q → p, when p ∈ ddep[q]. The dependency relation q p means

that either q → p or q x → p for some patch x.

Featherstitch maintains each block in its dirty state, including the effects of all un-

committed patches. However, each patch carries undo data, the previous version of the

block data altered by the patch. If a patch p is not written with its containing block, the

buffer cache reverts the patch, which swaps the new data on the buffered block and the

previous version in the undo data. Once the block is written, the system will re-apply the

patch and, when allowed, write the block again, this time including the patch. Some undo

mechanism is required to break potential block-level dependency cycles, as shown in the

next section. However, many of our optimizations avoid storing unnecessary undo data,

greatly reducing memory usage and CPU utilization.

Figure 2.1 summarizes our patch notation.

18

2.3.4 Examples

This section illustrates patch implementations of two widely-used file system consistency

mechanisms, soft updates and journaling. Our basic example extends an existing file by

a single block – perhaps an application calls ftruncate to append 512 zero bytes to an

empty file. The file system is based on Linux’s ext2, an FFS-like2 file system with inodes

and a free block bitmap. In such a file system, extending a file by one block requires (1)

allocating a block by marking the corresponding bit as “allocated” in the free block bitmap,

(2) attaching the block to the file’s inode, (3) setting the inode’s size, and (4) clearing the

allocated data block. These operations affect three blocks – a free block bitmap block, an

inode block, and a data block – and correspond to four patches: b (allocate), i (attach), i′

(size), and d (clear).

With soft updates, the final patch arrangement will consist of just these four patches,

with some dependencies between them designed to preserve important invariants on the

disk at all times. The correct dependencies are easy to determine, however, by follow-

ing some simple rules also used in the original soft updates implementation. After going

through the simple example, we also examine a variation that produces a block-level cycle,

and contrast soft updates patches with the BSD implementation.

With journaling, on the other hand, we will end up with a much more complex-looking

patch arrangement: since the example is so small, the extra patches for journaling seem

like a large burden. In a larger transaction, a lower proportion of extra patches would

be required – although there is insufficient space to depict such a transaction here. The

journaling arrangement also naturally results in a block-level cycle, which we identify to

help further clarify this important patch concept.

2Fast File System [30], an influential file system upon which many modern file system designs are based.

19

Soft updates Early file systems aimed to avoid post-crash disk inconsistencies by writ-

ing some, or all, blocks synchronously. For example, the write system call might block

until all metadata writes have completed – clearly bad for performance. Soft updates pro-

vide post-crash consistency without synchronous writes by tracking and obeying necessary

dependencies among writes. A soft updates file system orders its writes to enforce three

simple rules for metadata consistency [16]:

1. “Never write a pointer to a structure until it has been initialized (e.g., an inode must

be initialized before a directory entry references it).”

2. “Never reuse a resource before nullifying all previous pointers to it.”

3. “Never reset the last pointer to a live resource before a new pointer has been set.”

By following these rules, a file system limits possible disk inconsistencies to leaked re-

sources, such as blocks or inodes marked as in use but unreferenced. The file system can

be used immediately on reboot; a background scan can locate and recover the leaked re-

sources while the system is in use.

These rules map directly to patches. Figure 2.2a shows a set of soft updates-like

patches and dependencies for our block-append operation. Soft updates Rule 1 requires

that i → b. Rule 2 requires that d depend on the nullification of previous pointers to the

block. A simple, though more restrictive, way to accomplish this is to let d → b, where

b depends on any such nullifications (there are none here). The dependencies i → d and

i′ → d provide an additional guarantee above and beyond metadata consistency, namely

that no file ever contains accessible uninitialized data.

Figure 2.2b shows how an additional file system operation can induce a circular de-

pendency among blocks. Before the changes in Figure 2.2a commit, the user deletes a

one-block file whose data block and inode happen to lie on the bitmap and inode blocks

20

used by the previous operation. Rule 2 requires the dependency b2 → i2, but given this

dependency and the previous i → b, neither the bitmap block nor the inode block can be

written first! Breaking the cycle requires rolling back one or more patches, which in turn

requires undo data. For example, the system might roll back b2 and write the resulting

bitmap block, which contains only b. Once this write commits, all of i, i′, and i2 are safe to

write; once they commit, the system can write the bitmap block again, this time including

b2.

Unlike Featherstitch, the BSD UFS soft updates implementation (which has been the

default consistency mechanism in BSD for over a decade) represents each UFS operation

by a different specialized structure encapsulating all of that operation’s disk changes and

dependencies. These structures, their relationships, and their uses are quite complex [29],

and involve constant micromanagement by the file system code to ensure that appropri-

ate block data is written to disk. After each write to the disk completes, callbacks pro-

cess the structures and make pending, dependent changes to other cached disk blocks. In

some cases, this mechanism even resulted in userspace-visible anomalies like incorrect

link counts for directories when subdirectories had been recently removed, and required

the addition of new “effective” metadata fields in other kernel structures to hide them.

Journal transactions A journaling file system ensures post-crash consistency using a

write-ahead log. All changes in a transaction are first copied into an on-disk journal. Once

these copies commit, a commit record is written to the journal, signaling that the trans-

action is complete and all its changes are valid. Once the commit record is written, the

original changes can be written to the file system in any order, since after a crash the sys-

tem can replay the journal transaction to recover. Finally, once all the changes have been

written to the file system, the commit record can be erased, allowing that portion of the

journal to be reused.

21

This process also maps directly to patch dependencies, as shown in Figure 2.2c. Copies

of the affected blocks are written into the journal area using patches dJ, iJ, and bJ, each on

its own block. Patch cmt creates the commit record on a fourth block in the journal area; it

depends on dJ, iJ, and bJ. The changes to the main file system all depend on cmt. Finally,

patch cmp, which depends on the main file system changes, overwrites the commit record

with a completion record. Again, a circular block dependency requires the system to roll

back a patch, namely cmp, and write the commit/completion block twice.

2.3.5 Patch Implementation

Our Featherstitch file system implementation creates patch structures corresponding di-

rectly to this abstraction. Functions like patch_create_byte create patches; their argu-

ments include the relevant block, any direct dependencies, and the new data. Most patches

specify this data as a contiguous byte range, including an offset into the block and the patch

length in bytes. The undo data for very small patches (4 bytes or less) is stored in the patch

structure itself; for larger patches, undo data is stored in separately allocated memory. In

bitmap blocks, changes to individual bits in a word can have independent dependencies,

which we handle with a special bit-flip patch type.

The implementation automatically detects one type of dependency. If two patches q

and p affect the same block and have overlapping data ranges, and q was created after p,

then Featherstitch adds an overlap dependency q → p to ensure that q is written after p.

File systems need not detect such dependencies themselves.

For each block B, Featherstitch maintains a list of all patches with blk[p] = B. However,

committed patches are not tracked; when patch p commits, Featherstitch destroys p’s data

structure and removes all dependencies q → p. Thus, a patch whose dependencies have

all committed appears like a patch with no dependencies at all. Each patch p maintains

22

doubly linked lists of its direct dependencies and “reverse dependencies” (that is, all q

where q → p).

The implementation also supports empty patches, which have no associated data or

block. Empty patches automatically commit when all of their dependencies commit, and

can be used to “stand in” for future patches that have not yet been created by explicitly

holding them in memory. The journal module does this; see Section 2.4.3. Empty patches

can also be used shrink memory usage by representing densely bipartite sets of depen-

dencies with a linear number of edges, instead of a quadratic number. This is useful for

patchgroups; see Section 2.5. However, extensive use of empty patches adds to system

time by requiring additional patch traversals. Our implementation uses empty patches in-

frequently, and in the rest of this section, patches are nonempty unless explicitly stated.

2.3.6 Optimizations

A naı̈ve Featherstitch implementation creates many more patches, and allocates much

more undo data, than would be reasonable in practice. For example, when 256 MiB of

blocks are allocated in the untar benchmark described in Section 2.7, unoptimized Feath-

erstitch allocates an additional 533 MiB, mostly for patches and undo data. Several opti-

mizations, not part of this dissertation, were necessary in order to bring the performance of

the system within reason. Most of the optimizations merge patches together or omit undo

data when it is safe to do so, based on generic dependency analysis. Additional optimiza-

tions simplify Featherstitch’s other main overhead, the CPU time required for the buffer

cache to find a suitable set of patches to write. These optimizations apply transparently to

any Featherstitch file system, and have dramatic effects on real benchmarks. For instance,

they reduce memory overhead in the untar benchmark from 533 MiB to just 40 MiB.

23

2.3.7 Discussion

Optimizations can only do so much with bad dependencies. Just as having too few depen-

dencies can compromise system correctness, having too many dependencies, or the wrong

dependencies, can non-trivially degrade system performance. For example, in both the fol-

lowing patch arrangements, s depends on all of r, q, and p, but the left-hand arrangement

gives the system more freedom to reorder block writes:

s r q p s r q p

If r, q, and p are adjacent on disk, the left-hand arrangement can be satisfied with two disk

requests while the right-hand one will require four. Although neither arrangement is much

harder to code, in several cases we discovered that one of our file system implementations

was performing slowly because it created an arrangement like the one on the right.

Care must also be taken to avoid accidental overlap dependencies, which can occur

when patches are made larger than necessary. These additional dependencies enforce a

chronological ordering among the overlapping patches, which would not have been re-

quired with smaller, independent patches. Patches that change one independent field at a

time generally give the best results. For instance, inode blocks contain multiple inodes,

and changes to two inodes should generally be independent; a similar statement holds for

directories. Featherstitch will merge these patches when appropriate, but if they cannot be

merged, minimal patches tend to cause fewer patch reversions and give more flexibility in

write ordering.

File system implementations can also generate better dependency arrangements when

they can detect that previous changes are being undone before being written to disk. For

example, soft updates require that clearing an inode depend on nullifications of all cor-

responding directory entries, which normally induces dependencies from the inode onto

the directory entries. However, if the file was recently created and its directory entry has

24

yet to be written to disk, then a patch to remove the directory entry might merge with

the patch that created it (which itself depends on the patch initializing the inode). In that

case, there is no need for a dependency in either direction between the inode and directory

entry blocks: the directory entry will never exist on disk. Leaving out these dependen-

cies can speed up the system by avoiding block-level cycles, and the rollbacks and double

writes they cause. The Featherstitch ext2 module implements several optimizations like

this, significantly reducing disk writes, patch allocations, and undo data required when

files are created and deleted within a short time. Although the optimizations are file sys-

tem specific, the file system implements them using general properties, namely, whether

two patches successfully merge.

Finally, block allocation policies can have a dramatic effect on the number of I/O

requests required to write changes to the disk. For instance, soft updates-like dependencies

require that data blocks be initialized before an indirect block references them. Allocating

an indirect block in the middle of a range of file data blocks forces the data blocks to be

written as two smaller I/O requests, since the indirect block cannot be written at the same

time. Allocating the indirect block somewhere else allows the data blocks to be written

in one larger I/O request, at the cost of (depending on readahead policies) a potential

slowdown in read performance.

2.3.8 Debugging

We often found it useful to examine generated patch dependency graphs, both to find

overly restrictive dependencies causing poor performance, and to identify missing depen-

dencies that could violate consistency guarantees. To allow this, Featherstitch optionally

logs patch operations to disk; a separate debugger inspects and generates graphs from these

logs using the graphviz tool [13]. This facility enhanced the already-explicit dependency

25

specification in Featherstitch by displaying the generated dependencies visually, making

it easier to trace indirect dependencies and see when they did not exist. (It also made it

easy to generate the graphs used in our paper.) Although the graphs could sometimes be

daunting, involving hundreds or thousands of patches, they still proved invaluable in the

development of the system and should help to simplify the implementation of new mod-

ules.

2.4 Modules

Now that we have described patches, we return to the original reason for introducing them:

to allow a storage system to be divided into a collection of loosely cooperating modules.

Since these modules explicitly specify their write ordering requirements with patches,

multiple modules can cooperate to specify overall dependency requirements by passing

patches back and forth. This allows implementers to write file system extensions, both

providing and taking advantage of strong consistency guarantees, that would otherwise be

difficult or impossible to implement. A typical Featherstitch configuration is composed

of many such modules, which fall into three major categories: block devices, common file

systems, and low-level file systems. Of these, the first two are much like existing storage

system interfaces; the third, on the other hand, is unique to Featherstitch and helps divide

file system implementations into smaller modules. Featherstitch provides all three types

so that different modules can implement, and possibly also use, the interfaces that make

sense for the features they provide.

Block device (BD) modules are closest to the disk, and have a fairly conventional block

device interface with interfaces such as “read block” and “flush.” For example, the module

that enforces patch dependencies, the buffer cache module, is of this type. The journal

module is also a block device module; it adds journaling to whatever file system is run on

26

it by transforming the incoming dependencies.

Common file system (CFS) modules live closest to the system call interface, and have

an interface similar to VFS [23]. These modules generally do not deal with patches, but

can be used to implement simple “stackable” file system extensions that do not require

any specific dependencies (similar to [70, 71]). For instance, Featherstitch includes a case-

insensitivity module of this type.

In between these two interfaces are modules implementing the low-level file sys-

tem (L2FS) interface, which helps divide file system implementations into code common

across block-structured file systems and code specific to a given file system layout. The

L2FS interface has functions to allocate blocks, add blocks to files, allocate file names, and

other file system micro-operations. Like BD functions, L2FS functions deal with patches,

allowing file system extensions that need specific write orders for consistency to be im-

plemented as L2FS modules. A generic CFS-to-L2FS module called UHFS (“universal

high-level file system”) decomposes familiar VFS operations like write, read, and append

into L2FS micro-operations. Our ext2, UFS, and “waffle” file system modules implement

the L2FS interface, and sit “on top of” block device modules. (This is where any other file

systems would be implemented as well.)

Every L2FS and BD function that might modify the file system takes a patch_t **p

argument. Before the function is called, *p is set to the patch, if any, on which the modi-

fication should depend; when the function returns, *p is set to some patch corresponding

to the modification itself.

2.4.1 UHFS

The L2FS interface is very low-level, and abstracts, to the extent possible, only the struc-

ture of a given file system format – its layout on disk, but not how it is used. The ways in

27

which those structures are used is often very similar across block-structured file systems,

and in particular those influenced by the Fast File System [30]. The UHFS module imple-

ments high-level, VFS-like operations in terms of the lower-level L2FS interface, and is

reusable for different file systems; for instance, we use the same UHFS module with both

ext2 and UFS.

As an example, when appending data to a file, UHFS allocates a block using one L2FS

function (allocate_block), writes the data to the new block, and appends the now-

written block to the file’s block list using a second L2FS function (append_file_block).

It also knows how to hook the dependencies up for soft updates, so the underlying L2FS

module need not understand how to hook up dependencies between those operations nor

even when they might be used.

The UHFS module also deals with updating timestamps and other metadata, allowing

L2FS modules between the file system format and UHFS to implement otherwise unsup-

ported metadata (like Unix users and permissions on a FAT file system, for instance) by

storing that metadata in hidden files.

2.4.2 ext2, UFS, and waffle

Featherstitch currently has L2FS modules that implement three file system types: Linux

ext2, 4.2 BSD UFS (Unix File System, the modern incarnation of the Fast File System),

and “waffle,” which is a simple file system patterned after NetApp’s WAFL [20]. The ext2

and UFS modules initially generate dependencies arranged according to the soft updates

rules; other dependency arrangements, like journaling, are achieved by transforming these.

To the best of our knowledge, our implementation of ext2 is the first to provide soft up-

dates consistency guarantees. Unlike FreeBSD’s soft updates implementation, once these

modules set up dependencies, they no longer need to concern themselves with file system

28

consistency: the block device subsystem will track and enforce dependencies.

These modules were not difficult to write, although they are fairly large. For the most

part, they are merely reimplementations of the corresponding original versions in Linux

and BSD, although somewhat simplified due to the UHFS module handling part of the

work. The key property of these modules that distinguishes them from the original versions

is that they generate patches, allowing other modules to examine, add to, and change the

dependencies.

The waffle module, unlike the other two L2FS modules, generates dependencies ar-

ranged for shadow paging, where no block that is currently reachable from the file system

root on disk may be written. Rather, a copy is made and updated, and all pointers to the

block are updated (possibly recursively causing more blocks to be cloned). Periodically,

the single root block is updated (in place) to point to the new tree of blocks, atomically

switching from the old version of the file system to the new version. In this design, patch

dependencies always point downwards, from the root to the leaves, so that the root can

only be written once all the data to which it refers has also been written. In fact, the depen-

dencies need not form a deep tree – the patch that updates the root block can just directly

depend on all the others, giving the cache maximum flexibility in choosing which blocks

to write first. As further evidence that L2FS file system modules are not difficult to write,

we note that this module was written during the conference at which Featherstitch was

first presented, in order to include a slide about it in the presentation.

2.4.3 Journal

The journal module is a block device module that automatically makes any block device

journaled. It does this by transforming the incoming patches, presumably generated by

a file system module like ext2, into patches implementing journal transactions. It uses a

29

separate journal block device to store the journal, allowing many different possible config-

urations. For instance, the journal can be stored on a different partition on the same disk,

or on a separate disk, or a network block device. The journal block device can even be a

loopback block device (see §2.4.5) to a file within another file system – or the journaled

file system itself to produce an “internal” journal. No special provisions are necessary to

allow these configurations: patches convey all the required dependency information auto-

matically.3

Modified blocks are copied into the journal device by creating new patches. A com-

mit record patch is also created that depends on these other journal device patches; the

original patches are in turn altered to depend on the commit record. Any soft updates-like

dependencies among the original patches are removed, since they are not needed when

the journal handles consistency; however, the journal does obey user-specified dependen-

cies, in the form of patchgroups (see §2.5). Finally, a completion record, which overwrites

the commit record, is created depending on the original patches. This arrangement is also

described in Section 2.3.4 and depicted in Figure 2.2.

The journal format is similar to ext3’s [60]: a transaction contains a list of block num-

bers, the data to be written to those blocks, and finally a single commit record. Although

the journal modifies existing patches’ direct dependencies, it ensures that any new de-

pendencies do not introduce block-level cycles. (This is a statically worked out guarantee

based on careful analysis of the code involved. It is not checked at runtime, unless specific

debugging options are enabled.)

As in ext3, transactions are required to commit in sequence. The journal module sets

each commit record to depend on the previous commit record, and each completion record

to depend on the previous completion record. This allows multiple outstanding transac-

3The journal module does however have to detect recursive calls into itself, and not attempt to journal
the journal blocks, when an internal journal is in use.

30

tions in the journal, which benefits performance, but ensures that in the event of a crash,

the journal’s committed transactions will be contiguous.

Since the commit record is created at the end of the transaction, the journal module uses

dependencies on a special empty patch explicitly held in memory to prevent file system

changes from being written to the disk until the transaction is complete.

Our journal module prototype can run in full data journal mode, where every updated

block is written to the journal, or in metadata-only mode, where only blocks containing file

system metadata are written to the journal. It can tell which blocks are which by looking

for a special flag on each patch set by the UHFS module.

We also provide several other modules that modify dependencies, including an “asyn-

chronous mode” module that removes all dependencies, allowing the buffer cache to write

blocks in any order. Using the journal or asynchronous mode modules, the same ext2

module can be used in asynchronous, soft updates, or journaled modes. This is particu-

larly useful for testing, but also of practical utility, as in Linux (for instance) separate ext2

and ext3 modules are required to support just two of these modes – and the ext2 module is

no longer widely used, increasing the probability of serious bugs going undiscovered.

2.4.4 Buffer Cache

The Featherstitch buffer cache both caches blocks in memory and ensures that modifica-

tions are written to stable storage in a safe order. Modules “below” the buffer cache – that

is, between its output interface and the disk – are considered part of the “disk controller”;

they can reorder block writes at will without violating dependencies, since those block

writes will contain only in-flight patches. The buffer cache sees the complex consistency

mechanisms that other modules define as nothing more than sets of dependencies among

patches; it has no idea what consistency mechanisms it is implementing, if any. In some

31

sense, it is the “core” of a working Featherstitch system: it makes unnecessary the ad-hoc,

fragile, and obfuscated buffer cache micromanagement required with a “dumb” buffer

cache, and replaces it with generic dependency enforcement performed by a dedicated

module.

Our prototype buffer cache module uses a modified FIFO policy to write dirty blocks

and an LRU policy to evict clean blocks. (Upon being written, a dirty block becomes

clean and may then be evicted.) The FIFO policy used to write blocks is modified only to

preserve the in-flight safety property: a block will not be written if none of its patches are

ready to write. Once the cache finds a block with ready patches, it extracts all ready patches

P from the block, reverts any remaining patches on that block, and sends the resulting data

to the disk driver. The ready patches are marked in-flight and will be committed when

the disk driver acknowledges the write. The block itself is also marked in-flight until the

current version commits, ensuring that the cache will wait until then to write the block

again.

As a performance heuristic, when the cache finds a writable block n, it then checks to

see if block n + 1 can be written as well. It continues writing increasing block numbers

until some block is either unwritable or not in the cache. This simple optimization greatly

improves I/O wait time, since the I/O requests are merged and reordered in Linux’s ele-

vator scheduler. Nevertheless, there may still be important opportunities for further opti-

mization: for example, since the cache will write a block even if only one of its patches

is ready, it can choose to revert patches unnecessarily when a different order would have

required fewer writes.

32

block resizer

SATA sda

cache

ext2-1ext2-0

UHFS UHFS

journal

loop loop

VFS interface

application

L
2FS

VFS

CFS CFS

L2FS L2FS

BDBD

BD BD
BD

BD

/ /loop

data journal

/fs.img /fs.journal

Figure 2.3: A running Featherstitch configuration. / is a soft updates file system on a SATA
drive; /loop is an externally journaled file system on loop devices.

2.4.5 Loopback

The Featherstitch loopback module demonstrates how pervasive support for patches can

implement previously unfamiliar dependency semantics. Like Linux’s loopback device, it

provides a block device interface that uses a file in some other file system to store its data.

Unlike Linux’s block device, consistency requirements on this block device are obeyed

by the underlying file system. The loopback module forwards incoming dependencies to

its underlying file system. As a result, the file system will honor those dependencies and

preserve the nested file system’s consistency policies, even if it would normally provide

no consistency guarantees for file data (for instance, if it used metadata-only journaling).

Figure 2.3 shows an example configuration using two instances of the loopback mod-

ule. A file system image is mounted with an external journal, both of which are loopback

block devices stored on the root file system (which uses soft updates). The journaled file

system’s ordering requirements are sent through the loopback module as patches, main-

taining dependencies across boundaries that might otherwise lose that information. Most

systems cannot enforce consistency requirements through loopback devices this way –

33

unfortunate, as file system images are becoming popular tools in conventional operating

systems, used for example to implement encrypted home directories in Mac OS X. In the

event of a system failure, even though the outer file system might safely recover, the inner

file system could require a full file system check before it would be safe to use.

The loopback module actually does very little. The only real work it does is to translate

block device block numbers into file offsets within the backing file. In fact, to not forward

the patch dependencies would be extra work. It is one of the simplest modules in Feath-

erstitch, showing how Featherstitch’s modular design and patches make it easy to write

modules that enable entirely new classes of consistent file system configurations.

2.5 Patchgroups

Currently, robust applications can enforce necessary write-before relationships, and thus

ensure the consistency of on-disk data even after system crash, in only limited ways: they

can force synchronous writes using sync, fsync, or sync_file_range, or they can

assume particular file system implementation semantics, such as journaling. With the patch

abstraction, however, a process might specify just dependencies; the storage system could

use those dependencies to implement an appropriate ordering. This approach assumes little

about file system implementation semantics, but unlike synchronous writes, the storage

system can still buffer, combine, and reorder disk operations.

This section describes patchgroups, an example API for extending patches to userspace.

Applications engage patchgroups to associate them with subsequent file system changes;

dependencies are defined among patchgroups. A parent process can set up a dependency

structure that its child process will obey unknowingly. Patchgroups can apply to any file

system, and even raw block device writes, as they are implemented as a module within

Featherstitch. Just as patches allow Featherstitch to be broken into modules, patchgroups

34

�P = pg_create() pg_engag
e(P) pg_depend(*, P)

pg_disengage(P)

pg_engage(P)

pg_depend(*, P)pg_depend(P, *) pg_depend(*, P)

Engaged state

Figure 2.4: Patchgroup lifespan.

should enable applications with specific consistency requirements to be made more mod-

ular as well.

In this section we describe the patchgroup abstraction and apply it to three robust

applications.

2.5.1 Interface and Implementation

Patchgroups encapsulate sets of file system operations into units among which dependen-

cies can be applied. The patchgroup interface is as follows:

typedef int pg_t;

pg_t pg_create(void);

int pg_depend(pg_t Q, pg_t P); /* adds Q P */

int pg_engage(pg_t P);

int pg_disengage(pg_t P);

int pg_sync(pg_t P);

int pg_close(pg_t P);

Each process has its own set of patchgroups, which are currently shared among all

threads. The call pg_depend(Q, P) makes patchgroup Q depend on patchgroup P: all

patches associated with P will commit prior to any of those associated with Q. Engaging

a patchgroup with pg_engage causes subsequent file system operations to be associated

with that patchgroup, until it is disengaged. Any number of patchgroups can be engaged

at once; file system operations will be associated with all currently engaged patchgroups.

pg_sync forces an immediate write of a patchgroup to disk. pg_create creates a new

patchgroup and returns its ID, while pg_close disassociates a patchgroup ID from the

underlying patches which implement it.

35

Whereas Featherstitch modules are presumed to not create cyclic dependencies, the

kernel cannot safely trust user applications to be so well behaved, so the patchgroup API

makes cycles unconstructable. Figure 2.4 shows when different patchgroup dependency

operations are valid. As with patches themselves, all a patchgroup’s direct dependencies

are added first. After this, a patchgroup becomes engaged (allowing file system operations

to be associated with it) zero or more times; however, once a patchgroup P gains a depen-

dency via pg_depend(*, P), it is sealed and can never be engaged again. This prevents

applications from using patchgroups to hold dirty blocks in memory: Q can depend on P

only once the system has seen the complete set of P’s changes.

Patchgroups and file descriptors are managed similarly – they are copied across fork,

preserved across exec, and closed on exit. This allows existing, unaware programs to

interact with patchgroups, in the same way that the shell can connect pipe-oblivious pro-

grams into a pipeline. For example, a depend program could apply patchgroups to un-

modified applications by setting up the patchgroups before calling exec. The following

command line would ensure that in is not removed until all changes in the preceding sort

have committed to disk:

depend "sort < in > out" "rm in"

Without the patchgroup interface, an explicit fsync would be required after writing out

(and before removing in) in order to achieve comparable consistency semantics. Further,

it would force out to be written immediately, which in many cases may not be required

and can hurt performance.

Patchgroups are implemented within Featherstitch by a special L2FS module. It uses

several custom hooks into the rest of the kernel be notified when processes fork and exit,

and registers an ioctl handler on a control device with which it implements the patch-

group user interface. These parts of the patchgroup implementation are global, and shared

between all instances of the module, so that multiple instances can be active at once. Each

36

hP tP hOtQ

file system changes
written while

P was engaged

pg_depend
(Q, P)

pg_depend
(P, O)

.

Figure 2.5: How patchgroups are implemented in terms of patches (simplified). Empty
patches hP and tP bracket file system patches created while patchgroup P is engaged.
pg_depend connects one patchgroup’s t patch to another’s h.

patchgroup corresponds to a pair of containing empty patches, and each inter-patchgroup

dependency corresponds to a dependency between the empty patches. The patchgroup

module inserts all file system changes made through it between the containing empty

patches of any currently engaged patchgroups in the calling process. (That is, it creates

incoming and outgoing dependencies between the file system changes and the contain-

ing empty patches.) Figure 2.5 shows an example patch arrangement for two patchgroups.

(The actual implementation uses additional empty patches for bookkeeping.)

Patchgroups currently augment the underlying file system’s consistency semantics, al-

though a fuller implementation might let a patchgroup declare reduced consistency re-

quirements as well.

2.5.2 Case Studies

We studied the patchgroup interface by adding patchgroup support to three relatively sim-

ple applications, and one much more complex application. The required changes to the

simple applications, gzip, the Subversion [55] client, and the UW IMAP [61] server, were

made by Chris Frost. Detailed discussion of the changes is left to his dissertation; how-

ever, we present performance results for the modified IMAP server in Section 2.7.4 as

evidence that patchgroups can indeed help applications to achieve better performance. We

chose these applications for their relatively simple and explicit consistency requirements,

intending to test how well patchgroups can implement existing consistency mechanisms

rather than create new mechanisms. The more complex application, Anvil, is described in

37

detail in Chapter 3; our experience using patchgroups in its transaction library is described

in Section 3.4.1. In all cases, patchgroups make the required guarantees explicit, and can

be implemented on many types of file systems – the applications need not count on specific

properties of particular file systems.

2.6 Implementation

The Featherstitch prototype implementation runs as a Linux 2.6 kernel module. It inter-

faces with the Linux kernel at the VFS layer and the generic block device layer. In be-

tween, a Featherstitch module graph replaces Linux’s conventional file system layers. A

small kernel patch informs Featherstitch of process fork and exit events as required to

update per-process patchgroup state.

During initialization, the Featherstitch kernel module registers a VFS file system type

with Linux. Each file system Featherstitch detects on a specified disk device can then be

mounted from Linux using a command like mount -t kfs kfs:name /mnt/point.

Since Featherstitch provides its own patch-aware buffer cache, it sets O_SYNC on all

opened files as the simplest way to bypass the normal Linux cache and ensure that the

Featherstitch buffer cache obeys all necessary dependency orderings.

Featherstitch modules interact with Linux’s generic block device layer mainly via the

kernel function generic_make_request. This function sends read or write requests

to a Linux disk scheduler, which may reorder and/or merge the requests before even-

tually releasing them to the device. Writes are considered in flight as soon as they are

enqueued on the disk scheduler. A callback notifies Featherstitch when the disk controller

reports request completion; for writes, this commits the corresponding patches. The disk

safety property requires that the disk controller wait to report completion until a write has

reached stable storage. Most drives instead report completion when a write has reached

38

the drive’s volatile cache. Ensuring the stronger property could be quite expensive, requir-

ing frequent barriers or setting the drive cache to write-through mode; either choice seems

to prevent older drives from reordering requests. The solution is a combination of SCSI

tagged command queuing (TCQ) or SATA native command queuing (NCQ) with either a

write-through cache or “forced unit access” (FUA). TCQ and NCQ allow a drive to inde-

pendently report completion for multiple outstanding requests, and FUA is a per-request

flag that tells the disk to report completion only after the request reaches stable storage.

Recent SATA drives handle NCQ plus write-through caching or FUA exactly as we would

want: the drive appears to reorder write requests, improving performance dramatically rel-

ative to older drives, but reports completion only when data reaches the disk. We use a

patched version of the Linux 2.6.20.1 kernel with good support for NCQ and FUA, and a

recent SATA2 drive.

Our prototype has several performance problems caused by incomplete Linux inte-

gration. For example, writing a block requires copying that block’s data whether or not

any patches were undone, and our buffer cache currently stores all blocks in permanently-

mapped kernel memory, limiting the buffer cache’s maximum size.

2.7 Evaluation

To evaluate Featherstitch, we once again return to our basic goal in developing it: to divide

storage system software into fine-grained modules while preserving consistency, and with-

out a substantial performance penalty. Accordingly, we first evaluate the the performance

of Featherstitch relative to Linux ext2 and ext3 using a variety of benchmarks, including

the widely-used PostMark [22] and modified Andrew file system benchmarks. Next, we

briefly evaluate the consistency properties and general correctness of the Featherstitch im-

plementation by forcing spontaneous crashes and examining the state of the resulting disk

39

images. Finally, we evaluate the performance of patchgroups using an IMAP server mod-

ified to use them and a simple benchmark moving many messages. This evaluation shows

that a Featherstitch patch-based storage system has overall performance competitive with

Linux, though using up to four times more CPU time; that Featherstitch file systems are

consistent after system crashes; and that a patchgroup-enabled IMAP server outperforms

the unmodified server on Featherstitch. It does not address the benefits of modularity in

general or the extent to which Featherstitch’s modular design in particular is beneficial;

hopefully, this is at least to some extent evident from the configurations we use in the rest

of this evaluation as well as those already presented. (Several individual modules, like the

journal module and loopback module, also help to demonstrate it.)

2.7.1 Methodology

All tests were run on a Dell Precision 380 with a 3.2 GHz Pentium 4 CPU (with hyper-

threading disabled), 2 GiB of RAM, and a Seagate ST3320620AS 320 GB 7200 RPM

SATA2 disk. Tests use a 10 GiB file system and the Linux 2.6.20.1 kernel with the Ubuntu

v6.06.1 distribution. Because Featherstitch only uses permanently-mapped memory, we

disable high memory for all configurations, limiting the computer to 912 MiB of RAM.

Only the PostMark benchmark performs slower due to this cache size limitation. All tim-

ing results are the mean over five runs.

To evaluate Featherstitch we ran four benchmarks. The untar benchmark untars and

syncs the Linux 2.6.15 source code from the cached file linux-2.6.15.tar (218 MiB).

The delete benchmark, after unmounting and remounting the file system following the un-

tar benchmark, deletes the result of the untar benchmark and syncs. The PostMark bench-

mark emulates the small file workloads seen on email and netnews servers [22]. We use

PostMark v1.5, configured to create 500 files ranging in size from 500 B to 4 MiB; perform

40

500 transactions consisting of file reads, writes, creates, and deletes; delete its files; and fi-

nally sync. The modified Andrew benchmark emulates a software development workload.

The benchmark creates a directory hierarchy, copies a source tree, reads the extracted files,

compiles the extracted files, and syncs. The source code we use for the modified Andrew

benchmark is the Ion window manager, version 2-20040729.

2.7.2 Benchmarks and Linux Comparison

We benchmark Featherstitch and Linux for all four benchmarks, comparing the effects of

different consistency models and comparing patch-based with non-patch-based implemen-

tations. Specifically, we examine Linux ext2 in asynchronous mode; ext3 in writeback and

full journal modes; and Featherstitch ext2 in asynchronous, soft updates, metadata journal,

and full journal modes. All file systems were created with default configurations, and all

journaled file systems used a 64 MiB journal. Ext3 implements three different journaling

modes, which provide different consistency guarantees. The strength of these guarantees

is strictly ordered as “writeback < ordered < full.” Writeback journaling commits meta-

data atomically and commits data only after the corresponding metadata. Featherstitch

metadata journaling is equivalent to ext3 writeback journaling. Ordered journaling com-

mits data associated with a given transaction prior to the following transaction’s metadata,

and is the most commonly used ext3 journaling mode. Doing this requires ensuring that

blocks allocated during a transaction were not in use prior to the transaction – otherwise,

if the transaction is interrupted before it commits, the previous uses of those blocks will be

clobbered. While this concern is orthogonal to the use of patches, it does require that the

block allocator be aware of transactions, or that the journal module can hook into the block

allocator to ensure this; Featherstitch does not currently have either of these features and

so does not provide ordered mode journaling. In all tests ext3 writeback and ordered jour-

41

System Untar Delete PostMark Andrew
Featherstitch ext2
soft updates 6.4 [1.3] 0.8 [0.1] 38.3 [10.3] 36.9 [4.1]
meta journal 5.8 [1.3] 1.4 [0.5] 48.3 [14.5] 36.7 [4.2]
full journal 11.5 [3.0] 1.4 [0.5] 82.8 [19.3] 36.8 [4.2]
async 4.1 [1.2] 0.7 [0.2] 37.3 [6.1] 36.4 [4.0]
full journal 10.4 [3.7] 1.1 [0.5] 74.8 [23.1] 36.5 [4.2]
Linux
ext3 writeback 16.6 [1.0] 4.5 [0.3] 38.2 [3.7] 36.8 [4.1]
ext3 full journal 12.8 [1.1] 4.6 [0.3] 69.6 [4.5] 38.2 [4.0]
ext2 4.4 [0.7] 4.6 [0.1] 35.7 [1.9] 36.9 [4.0]
ext3 full journal 10.6 [1.1] 4.4 [0.2] 61.5 [4.5] 37.2 [4.1]

Figure 2.6: Benchmark times (seconds). System CPU times are in square brackets. Safe
configurations are bold, unsafe configurations are normal text.

naling modes performed similarly; since Featherstitch does not implement ordered mode,

we report only writeback results. Full journaling commits data atomically.

There is a notable write durability difference between the default Featherstitch and

Linux ext2/ext3 configurations: Featherstitch safely presumes a write is durable after it is

on the disk platter, whereas Linux ext2 and ext3 by default presume a write is durable once

it reaches the disk cache. However, Linux can write safely, by restricting the disk to pro-

viding only a write-through cache, and Featherstitch can write unsafely by disabling FUA.

We distinguish safe (FUA or a write-through cache) from unsafe results when comparing

the systems. Although safe results for Featherstitch and Linux utilize different mecha-

nisms (FUA vs. a write-through cache), we note that Featherstitch performs identically in

these benchmarks when using either mechanism.

The results are listed in Figure 2.6; safe configurations are listed in bold. In general,

Featherstitch performs comparably with Linux ext2/ext3 when providing similar durability

guarantees. Linux ext2/ext3 sometimes outperforms Featherstitch (for the PostMark test

in journaling modes), but more often Featherstitch outperforms Linux. There are several

possible reasons, including slight differences in block allocation policy, but the main point

42

is that Featherstitch’s general mechanism for tracking dependencies does not significantly

degrade total time. Unfortunately, Featherstitch can use up to four times more CPU time

than Linux ext2 or ext3. (Featherstitch and Linux have similar system time results for

the Andrew benchmark, perhaps because Andrew creates relatively few patches even in

the unoptimized case.) Higher CPU requirements are an important concern and, despite

much progress in our optimization efforts, remain a weakness. Some of the contributors to

Featherstitch CPU usage are inherent, such as patch creation, while others are artifacts of

the current implementation, such as creating a second copy of a block to write it to disk;

we have not separated these categories.

2.7.3 Correctness

In order to check that we had implemented the journaling and soft updates rules correctly,

we implemented a Featherstitch module which crashes the operating system, without giv-

ing it a chance to synchronize its buffers, at a random time during each run of the above

benchmarks. In Featherstitch asynchronous mode, after crashing, fsck nearly always re-

ported that the file system contained many references to inodes that had been deleted,

among other errors: the file system was corrupt. With our soft updates dependencies, the

file system was always soft updates consistent: fsck reported, at most, that inode ref-

erence counts were higher than the correct values (an expected discrepancy after a soft

updates crash). With journaling, fsck always reported that the file system was consistent

after the journal replay.

2.7.4 Patchgroups

One of the benefits of Featherstitch’s modularity is the ability to create modules that ar-

range patch dependencies to accurately reflect the desired write ordering, without impos-

43

ing unnecessary overhead. The patchgroup module even extends this ability into userspace,

where many applications can take advantage of this flexibility and avoid using mechanisms

like fsync. To demonstrate the effectiveness of this ability, we evaluate the performance

of an patchgroup-enabled UW IMAP mail server by benchmarking moving 1,000 mes-

sages from one folder to another. To move the messages, the client selects the source

mailbox (containing 1,000 2 KiB messages), creates a new mailbox, copies each message

to the new mailbox and marks each source message for deletion, expunges the marked

messages, commits the mailboxes, and logs out.

Figure 2.7 shows the results for safe file system configurations, reporting total time,

system CPU time, and the number of disk write requests (an indicator of the number of

required seeks in safe configurations). We benchmark Featherstitch and Linux with the

unmodified server (sync after each operation), Featherstitch with the patchgroup-enabled

server (pg_sync on durable operations), and Linux and Featherstitch with the server

modified to assume and take advantage of fully journaled file systems (changes are effec-

tively committed in order, so sync only on durable operations). Only safe configurations

are listed; unsafe configurations complete in about 1.5 seconds on either system. Feather-

stitch meta and full journal modes perform similarly; we report only the full journal mode.

Linux ext3 writeback, ordered, and full journal modes also perform similarly; we again

report only the full journal mode. Using an fsync per durable operation (CHECK and EX-

PUNGE) on a fully journaled file system performs similarly for Featherstitch and Linux;

we report the results only for Linux full journal mode.

In all cases Featherstitch with patchgroups performs better than Featherstitch with

fsync operations. Fully journaled Featherstitch with patchgroups performs at least as

well as all other (safe and unsafe) Featherstitch and all Linux configurations, and is 11–13

times faster than safe Linux ext3 with the unmodified server. Soft updates dependencies

are far slower than journaling for patchgroups: as the number of write requests indicates,

44

Implementation Time (sec) # Writes
Featherstitch ext2
soft updates, fsync per operation 65.2 [0.3] 8,083
full journal, fsync per operation 52.3 [0.4] 7,114
soft updates, patchgroups 28.0 [1.2] 3,015
full journal, patchgroups 1.4 [0.4] 32
Linux ext3
full journal, fsync per operation 19.9 [0.3] 2,531
full journal, fsync per durable operation 1.3 [0.3] 26

Figure 2.7: IMAP benchmark: move 1,000 messages. System CPU times shown in square
brackets. Writes are in number of requests. All configurations are safe.

each patchgroup on a soft updates file system requires multiple write requests, such as to

update the destination mailbox and the destination mailbox’s modification time. In con-

trast, journaling is able to commit a large number of copies atomically using only a small

constant number of requests. The unmodified fsync-per-operation server generates dra-

matically more requests on Featherstitch with full journaling than Linux, possibly indicat-

ing a difference in fsync behavior. The last line of the table shows that synchronizing to

disk once per durable operation with a fully journaled file system performs similarly to

using patchgroups on a journaled file system. However, patchgroups have the advantage

that they work equally safely, and efficiently, for other forms of journaling.

With the addition of patchgroups UW IMAP is able to perform mailbox modifications

significantly more efficiently, while preserving mailbox modification safety. On a metadata

or fully journaled file system, UW IMAP with patchgroups is 97% faster at moving 1,000

messages than the unmodified server achieves using fsync to ensure its write ordering

requirements.

2.7.5 Evaluation Summary

We find that Featherstitch has competitive performance on several benchmarks, despite

the additional effort required to maintain patches; that CPU time remains an optimization

45

opportunity; that applications can effectively define consistency requirements with patch-

groups that apply to many file systems; and that the Featherstitch implementation correctly

implements soft updates and journaling consistency. Our results indicate that even a patch-

based prototype can implement different consistency models with reasonable cost.

2.8 Summary

Consistency is an overall property of a storage system, involving every possible write order

that might be generated by any code in the system. Existing storage system implementa-

tions lack fine-grained modularity, and one major reason is that it is difficult to achieve

consistency in a modular way. Featherstitch patches provide a new way for storage sys-

tem implementations to formalize the “write-before” relationship among buffered changes

to stable storage, making the building blocks of consistency into first-class objects. This

separates the specification and enforcement of the desired dependencies, and allows many

modules and even user applications to cooperate loosely while providing strong consis-

tency guarantees. The resulting modular design also simplifies the implementation of con-

sistency mechanisms like journaling and soft updates, as the latter is made explicit and

easier to understand within each file system module, and the former can even be imple-

mented as a separate module. This design also allows file systems to nest while providing

correct consistency semantics, using a loopback module that forwards dependencies from

the inner file system to the containing file system. The enforcement of dependencies by a

dedicated module allows user applications to specify custom dependencies, via the patch-

group module, in addition to any generated within the storage system. This provides the

buffer cache more freedom to reorder writes without violating the application’s needs,

while simultaneously freeing the application from having to micromanage writes to disk.

We present results for an IMAP server modified to take advantage of this feature, and show

46

that it can significantly reduce both the total time and the number of writes required for

our benchmark. Thanks to several optimizations, the performance of our prototype is usu-

ally at least as fast as Linux when configured to provide similar consistency guarantees,

although in some cases it still requires improvement.

Nevertheless, the approach taken in Featherstitch can be a difficult one to apply to

existing systems: while it may be easier to implement file systems within Featherstitch,

that work has already been done for those systems. Even if maintaining Featherstitch ver-

sions might be easier, the initial cost of rewriting large amounts of well-tested code may

be too high to justify. Further, Featherstitch adds a large dynamic memory allocation bur-

den inside the kernel, especially when patchgroups – perhaps the feature most likely to

help justify the reimplementation cost – are involved. Realizing these shortcomings of the

Featherstitch approach to dividing a data storage system into modular components, but

sensing that we were on the right track, we decided to explore another approach in the

context of a different type of storage system. In the next chapter, rather than creating a

new first-class data type to represent consistency requirements inside a file system imple-

mentation, we isolate the consistency-sensitive portions of database back end to only a

very few modules, leaving the rest with no consistency responsibilities at all. As we will

see, this approach is quite successful, and it is also easier to see how these techniques

could be applied to existing systems.

47

Chapter 3

Anvil

Databases are used to store a tremendous amount of structured data, yet provide appli-

cation designers little control over how that data is actually stored and processed. What

configurable options exist generally control cache sizes and other simple system parame-

ters, rather than the actual storage strategies involved. Query language features allow the

specification of data types and indices, which offer high-level control over how queries

will be processed, but do not offer lower-level control over data representation and lay-

out. Some databases do allow additional “storage engine” modules to be loaded, but these,

much like file system modules, are internally monolithic and only modular in that several

can coexist.

I present Anvil, a back-end storage system for databases composed of fine-grained

modules which process and store data. The modules, called dTables, implement a key-

value interface, and also provide iterators allowing in-order traversal of the elements. Most

of the data in a Anvil system is read-only; special dTables overlay writable dTables and

read-only dTables to provide the illusion of fully-writable stores. This separation is central

to Anvil’s modular design, as it not only splits functionality among dTables but also the

functionality within each dTable: dTables for read-only data (the most common type of

48

dTable) can be further subdivided into code to read and code to create data stores. This

makes writing new dTables easy, both because the separate code is easier to understand

and also because it eliminates most transaction-related consistency concerns.

Further, just as the “common language” of patches allows Featherstitch modules to

communicate with one another, the pervasive iterator mechanism used to convey data be-

tween dTables provides an important communication channel within Anvil. For instance,

it makes possible “specialized” dTables, which store data more efficiently by limiting what

data can be stored. (A specialized dTable that only stores 4-byte integers need not store

data length information, for example.) Anvil allows these specialized dTables to be used

in combination with other, more general, dTables to provide a fully general store that

is optimized for common-case data. Finally, the separation of read-optimized and write-

optimized dTables also allows Anvil to very effectively take advantage of the properties

of disks, and even other storage technologies like flash memory, which are much faster at

sequential access than random access.

Together, all of these characteristics of the dTable design allow the task of storing

large amounts of data to be accomplished by a collection of loosely cooperating modules.

While a major goal of Anvil is to make writing new dTables simple, it also includes a

number of built-in dTables which can be arranged to store data in many traditional and

recently-proposed new ways.

The contributions of this work are the fine-grained, modular dTable design, including

an iterator facility whose rejection feature simplifies the construction of specialized tables;

several core dTables that overlay and manage other dTables; and the Anvil implementation,

which demonstrates that fine-grained database back end modularity need not carry a severe

performance cost.

There were several notable challenges in developing Anvil. Correctly implementing

transactions atop Linux ext3 proved to be quite tricky; ext3 does not officially provide

49

any mechanisms to support this other than fsync, which forces synchronous disk access.

Anvil uses knowledge of ext3’s implementation to “trick” it into providing the necessary

support by carefully ordering its system calls, but getting this to work correctly took sev-

eral iterations and was very error-prone. Another challenge was choosing interfaces flexi-

ble enough to accommodate many different kinds of dTables while remaining simple and

easy to implement. For instance, some specialized dTables cannot store all possible val-

ues, and may need to work with other dTables to store the values they cannot themselves

store; this complication, however, should not make it more difficult to implement unre-

lated dTables. Other challenges included optimizing overlay iteration to avoid expensive

key comparisons, and designing and implementing the small handful of dTables that han-

dle consistency concerns. Also challenging, but in an entirely different way, was adapting

SQLite to use Anvil as a back end; while incredibly well-documented, it nevertheless can

be difficult to understand and modify.

Anvil is joint work with Shant Hovsepian and Eddie Kohler. I wrote most of Anvil;

Shant has worked on a few parts of the system, but primarily was responsible for getting

several of the benchmarks working.

3.1 Anvil Introduction

Database management systems offer control over how data is physically stored, but in

many implementations, ranging from embeddable systems like SQLite [51] to enterprise

software like Oracle [38], that control is limited. Users can tweak settings, select indices,

or choose from a short menu of table storage formats, but further extensibility is limited to

coarse-grained interfaces like MySQL’s custom storage engines [33]. Even recent special-

ized engines [9, 54] – which have shown significant benefits from data format changes,

such as arranging data in columns instead of the traditional rows [17, 53] or compressing

50

sparse or repetitive data [1, 64] – seem to be implemented monolithically. A user whose ap-

plication combines characteristics of online transaction processing and data warehousing

may want a database that combines storage techniques from several engines, but database

systems rarely support such fundamental low-level customization.

We present Anvil, a modular, extensible toolkit for building database back ends. Anvil

comprises flexible storage modules that can be configured to provide many storage strate-

gies and behaviors. We intend Anvil configurations to serve as single-machine back-end

storage layers for databases and other structured data management systems.

The basic Anvil abstraction is the dTable, an abstract key-value store. Some dTables

communicate directly with stable storage, while others layer above storage dTables, trans-

forming their contents. dTables can represent row stores and column stores, but their fine-

grained modularity offers database designers more possibilities. For example, a typical

Anvil configuration splits a single “table” into several distinct dTables, including a log to

absorb writes and read-optimized structures to satisfy uncached queries. This design intro-

duces opportunities for clean extensibility – for example, we present a Bloom filter dTable

that can slot above read-optimized stores and improve the performance of nonexistent

key lookup. It also makes it much easier to construct data stores for unusual or special-

ized types of data; we present several such specialized stores. Conventional read/write

functionality is implemented by dTables that overlay these bases and harness them into a

seamless whole.

Results from our prototype implementation of Anvil are promising. Anvil can act as a

back end for a conventional, row-based query processing layer – here, SQLite – and for

hand-built data processing systems. Though Anvil does not yet support fully concurrent

access, many parts of it are already thread-safe to allow some specific kinds of concurrent

access. Additionally, our evaluation demonstrates that Anvil’s modularity does not sig-

nificantly degrade performance. Anvil generally performs about as well as or better than

51

existing back-end storage systems based on B-trees on “conventional” workloads while

providing similar consistency and durability guarantees, and can perform better still when

customized for specific data and workloads.

In this chapter, we describe Anvil’s general design and the Anvil transaction library,

which provides the rest of the system with transactional primitives. We then describe many

of Anvil’s individual dTables, giving examples of their use to store different kinds of data.

Finally, we evaluate the system by using Anvil as the back end for SQLite [51] and as a

standalone data store, the latter allowing us to configure it more freely and obtain results

similar to recent published works.

3.2 Related Work

In the late 1980s, extensible database systems like Genesis [3] and Starburst [25] explored

new types of data layouts, indices, and query optimizers. Starburst in particular defines a

“storage method” interface for storage extensibility. This interface features functions for,

for example, inserting and deleting a table’s rows. Each database table has exactly one

storage method and zero or more “attachments,” which are used for indexes and table con-

straints. Anvil’s modularity is finer-grained than Starburst’s. Anvil implements the func-

tionality of a Starburst storage method through a layered collection of specialized dTables.

This increased modularity, and in particular the split between read-only and write-mostly

structures, simplifies the construction of new storage methods and method combinations.

Like Starburst, recent versions of MySQL [32] allow users to specify a different stor-

age engine to use for each table. These engines can be loaded dynamically, but again, are

not composable. They are also not as easily implemented as Anvil dTables, since they must

be read-write while providing the correct transactional semantics. Postgres [52] supported

(and now PostgreSQL supports) user-defined index types, but these types cannot control

52

the physical layout of the data itself.

Monet [6] splits a database into a front end and a back end, where the back end has

its own query language. While it does not aim to provide the database designer with any

modular way of configuring or extending the back end, it does envision that many different

front ends should be able to use the same back end.

Stasis [42] is a storage framework providing applications with transactional primitives

for an interface very close to that of a disk. Stasis aims for a much lower-level abstraction

than Anvil, and expects each application to provide a large part of the eventual storage

implementation. Anvil could be built on top of a system like Stasis. This is not necessary,

however: Anvil specifically tries to avoid needing strong transactional semantics for most

of its data, both for simplicity and to allow asynchronous writes and group commit.

Berkeley DB [36] provides a transactional key-value store, accessed via a library API

rather than a network or socket connection, very much like Anvil. It contains several dif-

ferent on-disk data structures among which client applications can choose, and supports

concurrent access from many threads as well as “high availability” features like distribu-

tion and replication. However, its on-disk layouts cannot be combined or layered together

as dTables can; to create a data format combining the properties of several others, an en-

tirely new stand-alone format must be implemented.

Anvil’s split between read-only and write-mostly structures relates to read-optimized

stores [2, 17, 43] and log-structured file systems [40]. In some sense Anvil carries the

idea of a read-optimized store to its limit. Several systems have also investigated batching

changes in memory or separate logs, and periodically merging the changes into a larger

corpus of data [8, 37, 43]. The functional split between read and write is partially motivated

by the increasing discrepancies between CPU speeds, storage bandwidth, and seek times

since databases were first developed [18, 54].

We intend Anvil to serve as an experimental platform for specialized stores. Some such

53

stores have reported orders-of-magnitude gains on some benchmarks compared to conven-

tional systems [53]. These gains are obtained using combinations of techniques, including

relaxing durability requirements and improving query processing layers as well as chang-

ing data stores. We focus only on data stores; the other improvements are complementary

to our work. Specifically, Anvil’s cTable interface uses ideas and techniques from work on

column stores [17, 53],

Bigtable [9], the structured data store for many Google products, influenced Anvil’s

design. Each Bigtable “tablet” is structured like an Anvil managed dTable configuration: a

persistent commit log (like the Anvil transaction library’s system journal), an in-memory

buffer (like that in the journal dTable), and an overlay of several sorted read-only “SSTa-

bles” (like a specific kind of linear dTable). Anvil table creation methods and iterators

generalize Bigtable compactions to arbitrary data formats. Anvil’s fine-grained modularity

helps it support configurations Bigtable does not, such as transparent data transformations

and various indices. Bigtable’s extensive support for scalability and distribution across

large-scale clusters is orthogonal to Anvil, as is its automated replication via the Google

File System.

Many of these systems support features that Anvil currently lacks, such as fine-grained

locking to support high concurrency, or distribution and replication to support high avail-

ability. However, we believe their techniques for implementing these features are comple-

mentary to Anvil’s modularity.

Anvil aims to broaden and distill ideas from these previous systems, and new ideas,

into a toolkit for building data storage layers.

54

3.3 Design

Two basic goals guided the design of Anvil. First, we want Anvil modules to be fine-

grained and easy to write. Implementing behaviors optimized for specific workloads should

be a matter of rearranging existing modules (or possibly writing new ones). Second, we

want to use storage media effectively by minimizing seeks, instead aiming for large con-

tiguous accesses. Anvil achieves these goals by explicitly separating read-only and write-

mostly components, using stacked data storage modules to combine them into read/write

stores. Although the Anvil design accommodates monolithic read/write stores, separat-

ing these functions makes the individual parts easier to write and easier to extend through

module layering. In this section, we describe the design of our data storage modules, which

are called dTables.

3.3.1 dTables

dTables implement the key-value store interface summarized in Figure 3.1. For reading,

the interface provides both random access by key and seekable, bidirectional iterators that

yield elements in sorted order. Some dTables implement this interface directly, storing data

in files, while others perform additional bookkeeping or transformations on the data and

leave storage up to one or more other dTables stacked underneath.

To implement a new dTable, the user writes a new dTable class and, usually, a new

iterator class that understands the dTable’s storage format. However, iterators and dTable

objects need not be paired: some layered dTables pass through iterator requests to their

underlying tables, and some iterators are not associated with any single table.

Many dTables are read-only. This lets stored data be optimized in ways that would be

impractical for a writable dTable – for instance, in a tightly packed array with no space

for new records, or compressed using context-sensitive algorithms [73]. The creation pro-

55

class dtable {
bool contains(key_t key) const;
value_t find(key_t key) const;
iter iterator() const;
class iter {

bool valid() const;
key_t key() const;
value_t value() const;
bool first(); // return true if new position is valid
bool next();
bool prev();
bool seek(key_t key);
bool reject(value_t * placeholder); // used at create time, return true on success

};
static int create(string file, iter src);
static dtable open(string file);
int insert(key_t key, value_t value);
int remove(key_t key);

};

Figure 3.1: Simplified pseudocode for the dTable interface.

cedure for a read-only dTable takes an iterator for the table’s intended data. The iterator

yields the relevant data in key-sorted order; the creation procedure stores those key-value

pairs as appropriate. A read-only dTable implements creation and reading code, leaving

the insert and remove methods unimplemented. In our current dTables, the code split

between creation and reading is often about even. Specific examples of read-only dTables

are presented in more detail in Section 3.5.

Specialized dTables can refuse to store some kinds of data. For example, the array

dTable stores fixed-size values in a file as a packed array; this gives fast indexed access,

but values with unexpected sizes cannot be stored. Specialized dTables must detect and

report attempts to store illegal values. In particular, when a creation procedure’s input

iterator yields an illegal value, the creation procedure must reject the key-value pair by

calling the iterator’s reject method. This explicit rejection gives other Anvil modules an

opportunity to handle the unexpected pair, and allows the use of specialized dTables for

values that often, but not always, fit some specialized constraints. The rejection notification

56

int array_dtable::create(string file, iter src) {
wrfile output(file);
output.append(src.key()); // min key
while (src.valid()) {

value_t value = src.value();
if (value.size() != configured_size && !src.reject(&value))

return -1;
output.append(value);
src.next();

}
return 0;

}

Figure 3.2: Simplified pseudocode for the array dTable’s create method. (This minimal
version does not, among other things, check that the keys are actually contiguous.)

travels back to the data source along the chain of layered iterators. If a particular layer’s

iterator knows how to handle a rejected pair, for instance by storing the true pair in a

more forgiving dTable, its reject function will store the pair, replace the offending

value with a placeholder, and return true. (This placeholder can indicate at lookup time

when to check the more forgiving dTable for overrides.) If the rejected pair is not handled

anywhere, reject will return false and the creation operation will fail. We describe the

exception dTable, which handles rejection notifications by storing the rejected values in

a separate (more generic) dTable, in Section 3.5.5. Figure 3.2 shows pseudocode for the

array dTable’s create method, including its use of reject.

Anvil iterators are used mostly at table creation time, which stresses their scanning

methods (key, value, valid, and next, as well as reject). However, external code,

such as our SQLite query processing interface, can use iterators as database cursors. The

seeking methods (seek, prev) primarily support this use.

Other dTables are designed mostly to support writing. Writable dTables are usually

created empty and populated by writes.

Although arbitrarily complex mechanisms can be built into a single dTable, complex

storage systems are better built in Anvil by composing simpler pieces. For instance, rather

57

than building a dTable to directly store U.S. state names and postal abbreviations effi-

ciently (via dictionary lookup) in a file, a dTable can translate state names to dictionary

indices and then use a more generic dTable to store the translated data. Likewise, instead

of designing an on-disk dTable that keeps a B-tree index of the keys to improve lookup

locality, a passthrough B-tree dTable can store, in a separate file, a B-tree index of the

keys in another dTable. Further, these two dTables can be composed, to get a B-tree in-

dexed dTable that stores U.S. states efficiently. Similar examples are discussed further in

Sections 3.5.2 and 3.5.4.

3.3.2 Data Unification

An Anvil table representation will usually consist of several read-only dTables, created

at different times, and one writable dTable. Using this representation directly from client

code would inconveniently require consultation of all the dTables. In addition, the peri-

odic conversion of write-optimized dTables to read-only dTables requires careful use of

transactions, something that applications should be able to avoid. Anvil includes two key

dTables which deal with these chores, combining the operations of arbitrary readable and

writable dTables into a single read/write store. We introduce these dTables here; they are

discussed in greater detail in Section 3.5.3.

The overlay dTable builds the illusion of a single logical dTable from two or more

other dTables. It checks a list of subordinate dTable elements, in order, for requested keys,

allowing dTables earlier in the list to override values in later ones. This is, in principle,

somewhat like the way Unionfs [67] merges multiple file systems, but simpler in an im-

portant way: like most dTables, the overlay dTable is read-only. The overlay dTable also

merges its subordinates’ iterators, exporting a single iterator that traverses the unified data.

Significantly, this means that an overlay dTable iterator can be used to create a single new

58

Managed dTable

Overlay dTable

reads

Writable dTable

writes,
digests

Read−only dTable(s)

combines

reads reads

Figure 3.3: The relationships between a managed dTable and the dTables it uses.

read-only dTable that combines the data of its subordinates.

The managed dTable automates the use of these overlay dTables to provide the inter-

face of a read/write store. This dTable is an essential part of the typical Anvil configuration

(although, for example, a truly read-only data store wouldn’t need one). It is often a root

module in a dTable module subgraph. Its direct subordinates are one writable dTable,

which satisfies write requests, and zero or more read-only dTables, which contain older

written data; it also maintains an overlay dTable containing its subordinates. Figure 3.3

shows a managed dTable configuration.

Each managed dTable periodically empties its writable dTable into a new read-only

dTable, presumably improving access times. We call this operation digesting, or, as the

writable dTable we currently use is log-based, digesting the log. The managed dTable also

can merge multiple read-only dTables together, an operation called combining. Without

combining, small digest dTables would accumulate over time, slowing the system down

and preventing reclamation of the space storing obsoleted data. Combining is similar in

principle to the “tuple mover” of C-Store [53], though implemented quite differently. In

C-Store, the tuple mover performs bulk loads of new data into read-optimized (yet still

writable) data stores, amortizing the cost of writing to read-optimized data structures. In

Anvil, however, the managed dTable writes new read-only dTables containing the merged

data, afterwards deleting the original source dTables, a process corresponding more closely

to Bigtable’s merging and major compactions.

59

class ctable {
bool contains(key_t key) const;
value_t find(key_t key, int col) const;
iter iterator(int cols[], int ncols) const;
int index_of(string name) const;
string name_of(int index) const;
int column_count() const;
class iter {

bool valid() const;
key_t key() const;
value_t value(int col) const;
bool first();
bool next();
bool prev();
bool seek(key_t key);

};
static int create(string file);
static ctable open(string file);
int insert(key_t key, int col, value_t value);
int remove(key_t key);

};

Figure 3.4: A simplified, pseudocode version of the cTable interface.

The managed dTable also maintains metadata describing which other dTables it is cur-

rently using and in what capacity. Metadata updates are included in atomic transactions

when necessary (using the transaction library described in §3.4), largely freeing other dTa-

bles from this concern.

3.3.3 Columns

Another Anvil interface, cTable, represents columnated data. It differs from the dTable

interface in that it deals with named columns as well as row keys. cTables use dTables as

their underlying storage mechanism. Like writable dTables, they are created empty and

populated by writes. Figure 3.4 shows a simplified version of the cTable interface.

Anvil contains two primitive cTable types (though like the dTable interface, it is exten-

sible and would support other feature combinations). The first primitive, the row cTable,

packs the values for each column together into a single blob, which is stored in a single

60

underlying dTable. This results in a traditional row-based store where all the columns of

a row are stored together on disk. The second, the column cTable, uses one underlying

dTable per column; these dTables can have independent configurations. A row cTable’s it-

erator is a simple wrapper around its underlying dTable’s iterator, while a column cTable’s

iterator wraps around multiple underlying iterators, one per column.

In a column-based arrangement, it is possible to scan a subset of the columns without

reading the others from disk. To support this, cTable iterators provide a projection feature,

where a subset of the columns may be selected and iterated. A list of relevant column

indices is passed to the iterator creation routine; the returned iterator only provides access

to those columns. A column cTable’s iterator does not iterate over unprojected columns,

while a row cTable’s iterator ignores the unwanted column data when it is unpacking the

blob for each row. We compare the merits of these two cTables in Section 3.7.4.

3.3.4 Discussion

Anvil is implemented in C++, but also provides an API for access from C. All dTable

implementations are C++ classes. There is also a dTable iterator base class from which

each of the dTables’ iterator classes inherit.1 While many parts of Anvil are currently

single-threaded, some dTables support limited use of additional threads, and the relevant

core data classes (e.g., file caches and reference-counted blobs) are all thread-safe.

An Anvil instance is provided at startup with a configuration string describing the lay-

out pattern for its dTables and cTables. The initialization process creates objects according

to this configuration, which also specifies dTable parameters, such as the value size ap-

propriate for an array dTable. The dTable graph in a running Anvil data store will not

1This is a departure from the STL iterator style: iterators for different types of dTables need different
runtime implementations, but must share a common supertype.

61

exactly equal the static configuration, since dTables like the managed dTable can create

and destroy subordinates at runtime. However, the configuration does specify what kinds

of dTables are created.

dTables that store data on disk do so using files on the underlying file system; each

such dTable owns one or more files.

Although our current dTables ensure that iteration in key-sorted order is efficient, this

requirement is not entirely fundamental. Iteration over keys is performed only by dTable

createmethods, whereas most other database operations use lookup and similar meth-

ods. In particular, the dTable abstraction could support a hash table implementation that

could not yield values in key-sorted order, as long as that dTable’s iterators never made

their way to a conventional dTable’s create method. (See, for instance, the optimization

discussed in §3.6.)

Anvil was designed to make disk accesses largely sequential, avoiding seeks and en-

abling I/O request consolidation. Its performance benefits relative to B-tree-based storage

engines come largely from sequential accesses. Although upcoming storage technologies,

such as solid-state disks, will eventually reduce the relative performance advantage of se-

quential requests, Anvil shows that good performance on spinning disks need not harm

programmability, and we do not believe a new storage technology would require a full

redesign.

Our evaluation shows that the Anvil design performs well on several realistic bench-

marks, but in some situations its logging, digesting, and combining mechanisms might not

be appropriate no matter how it is configured. For instance, in a very large database that is

queried infrequently and regularly overwritten, the work to digest log entries would largely

be wasted due to infrequent queries. Further, obsolete data would build up quickly as most

records in the database are regularly updated. Although combine operations would remove

the obsolete data, scheduling them as frequently as would be necessary would cause even

62

more overhead.

3.4 Transaction Library

Anvil modules use a common transaction library to access persistent storage. This library

abstracts the file-system-specific mechanisms that keep persistent data both consistent and

durable. Anvil state is always kept consistent: if an Anvil database crashes in a fail-stop

manner, a restart will recover state representing some prefix of committed transactions,

rather than a smorgasbord of committed transactions, uncommitted changes, and corrup-

tion. In contrast, users choose when transactions should become durable (committed to

stable storage).

The transaction library’s design was constrained by Anvil’s modularity on the one

hand, and by performance requirements on the other. dTables can store persistent data in

arbitrary formats, and many dTables with different requirements cooperate to form a con-

figuration. For good performance on spinning disks, however, these dTables must coop-

erate to group-commit transactions in small numbers of sequential writes. Our solution is

to separate consistency and durability concerns through careful use of file-system-specific

ordering constraints, and to group-commit changes in a shared log called the system jour-

nal. Separating consistency and durability gives users control over performance without

compromising safety, since the file system mechanisms used for consistency are much

faster than the synchronous disk writes required for durability.

3.4.1 Consistency

The transaction library provides consistency and durability for a set of small files explic-

itly placed in its care. Each transaction uses a file-system-like API to assign new contents

to some files. (The old file contents are replaced, making transactions idempotent.) The li-

63

brary ensures that these small files always have consistent contents: after a fail-stop crash

and subsequent recovery, the small files’ contents will equal those created by some pre-

fix of committed transactions. More is required for full data store consistency, however,

since the small library-managed files generally refer to larger files managed elsewhere.

For example, a small file might record the commit point in a larger log, or might name

the current version of a read-only dTable. The library thus lets users define consistency re-

lationships between other data files and a library-managed transaction. Specifically, users

can declare that a transaction must not commit until changes to some data file become per-

sistent. This greatly eases the burden of dealing with transactions for most dTables, since

they can enforce consistency relationships for their own arbitrary files.

The library maintains an on-disk log of updates to the small files it manages. API

requests to change a file are cached in memory; read requests are answered from this

cache. When a transaction commits, the library serializes the transaction’s contents to its

log, mdtx.log. (This is essentially a group commit, since the transaction might contain

updates to several small files. The library currently supports at most one uncommitted

transaction at a time, although this is not a fundamental limitation.) It then updates a

commit record file, mdtx.cmt, to indicate the section of mdtx.log that just committed.

Finally, the library plays out the actual changes to the application’s small files. On replay,

the library runs through mdtx.log up to the point indicated by mdtx.cmt and makes the

changes indicated.

To achieve consistency, the library must enforce a dependency ordering among its

writes: mdtx.log happens before (or at the same time as) mdtx.cmt, which happens

before (or at the same time as) playback to the application’s small files.

This ordering could be achieved by calls like fsync, but such calls achieve durability

as well as ordering and are extremely expensive on many stable storage technologies [27].

Anvil instead relies on file-system-specific mechanisms for enforcing orderings. By far

64

data files

transaction log
(staged metadata

file updates)

commit record

playback
(write metadata

files)

erase
commit record

Figure 3.5: Patchgroups used to implement an Anvil transaction. Ovals represent patch-
groups, which encompass sets of file system operations. Outgoing arrows represent de-
pendencies on other patchgroups, similar to arrows in patch diagrams.

the simpler of the mechanisms we’ve implemented is the explicit specification of order-

ing requirements using the Featherstitch storage system’s patchgroup abstraction [14]. The

transaction library’s patchgroups define ordering constraints that the file system implemen-

tation must obey. Explicit dependency specification is very clean, and simple inspection

of the generated dependencies can help verify correctness. Anvil’s ordering requirements

in building each transaction translate directly to patchgroups, as shown in Figure 3.5.

Additionally, while running actual crash tests for Anvil’s consistency mechanisms (as

in §3.7.8) is still a good idea, using patchgroups allows us to decompose a theoretical proof

of its correctness into two simpler steps. In one step, we verify that the implementation of

patchgroups and of patches in general is correct, as in Section 2.7.3. (This step needs to be

done only once, for Featherstitch itself.) In the second step, we verify that the patchgroups

Anvil generates are correct by inspection using the Featherstitch patchgroup debugger,

which shows the generated patchgroups and their dependencies visually.

Despite these benefits of using patchgroups, we eventually abandoned this approach,

for two reasons. First, systems like Featherstitch are not widely deployed, and we wanted

to allow Anvil to run on as many systems as possible. Second, Anvil created enough patch-

groups that a substantial amount of memory was used to store the structural empty patches

used to implement them. We believe that further optimizations to patches, and in partic-

ular to empty patches and their use by patchgroups, could alleviate this issue; however,

65

no further work on Featherstitch is planned. (The simpler examples in §2.5.2 generate or-

ders of magnitude fewer patchgroups than Anvil, and thus do not exhibit any problems

using patchgroups; in fact, the performance of the IMAP server improves.) Fortunately,

ext3’s behavior is sufficiently dependable that it can be used to simulate the disk ordering

requirements Anvil needs.

Anvil thus currently relies on the accidental [59] write ordering “guarantees” provided

by Linux’s ext3 file system in ordered data mode. This mode makes two guarantees to

applications. First, metadata operations (operations other than writes to a regular file’s

data blocks) are made in atomic epochs, 5 seconds in length by default. Second, writes

to the data blocks of files, including data blocks allocated to extend a file, will be written

before the current metadata epoch. In particular, if an application writes to a file and then

renames that file (a metadata operation), and the rename is later observed after a crash,

then the writes to the file’s data blocks are definitely intact.

Anvil’s transaction library, like the Subversion [55] working copy library, uses this

technique to ensure consistency. Concretely, the mdtx.cmt file, which contains the com-

mit record, is written elsewhere and renamed. This rename is the atomic commit point.

For example, something like the following system calls would commit a new version of a

16-byte sysjnl.md file:

pwrite("mdtx.log", [sysjnl.md => new contents], ...)

pwrite("mdtx.cmt.tmp", [commit record], ...)

rename("mdtx.cmt.tmp", "mdtx.cmt") <- COMMIT

pwrite("sysjnl.md.tmp", [new contents], ...)

rename("sysjnl.md.tmp", "sysjnl.md")

The last two system calls play out the changes to sysjnl.md itself. Writing to sysjnl.md

directly would not be safe: ext3 might commit those data writes before the rename meta-

data write that commits the transaction. Thus, playback also uses the rename technique

66

to ensure ordering. (This property is what makes the transaction library most appropriate

for small files.)

The library maintains consistency between other data files and the current transaction

using similar techniques. For example, in ext3 ordered data mode, the library ensures that

specified data file changes are written before the rename commits the transaction.

As an optimization, the transaction library actually maintains only one commit record

file, mdtx.cmt.N. Fixed-size commit records are appended to it, and it is renamed so

that N is the number of committed records. Since the transaction library’s transactions

are small, this allows it to amortize the work of allocating and freeing the inode for the

commit record file over many transactions. After many transactions, the file is deleted and

recreated.

Much of the implementation of the transaction library is shared between the Feather-

stitch and ext3 versions, as most of the library’s code builds transactions from a generic

“write-before” dependency primitive. When running Anvil on Featherstitch, we used de-

pendency inspection tools to verify that the correct dependencies were generated. Al-

though dependencies remain implicit on ext3, the experiments in Section 3.7.8 add confi-

dence that our ext3-based consistency mechanisms are correct in the face of failures.

3.4.2 Durability

As described so far, the transaction library ensures consistency, but not durability: updates

to data are not necessarily stored on the disk when a success code is returned to the caller,

or even when the Anvil transaction is ended. Updates will eventually be made durable,

and many updates made in a transaction will still be made atomic, but it is up to the caller

to explicitly flush the Anvil transaction (forcing synchronous disk access) when strong

durability is required. For instance, the caller might force durability for network-requested

67

Class dTable Writable? Description Section
Storage Linear No Stores arbitrary keys and values in sorted order 3.5.1

Fixed-size No Stores arbitrary keys and fixed-size values in sorted order 3.5.4
Array No Stores consecutive integer keys and fixed-size values in an array 3.5.4
Indexed No Stores consecutive integer keys and arbitrary values in sorted order 3.5.4
Unique-string No Compresses common strings in values 3.5.1
Empty No Read-only empty dTable 3.5.1
Memory Yes Non-persistent dTable 3.5.1
Journal Yes Collects writes in the system journal 3.5.1

Performance B-tree No Speeds up lookups with a B-tree index 3.5.2
Bloom filter No Speeds up nonexistent key lookups with a Bloom filter 3.5.2
Sliding window No Stores spatially local repeated values only once in underlying dTables 3.5.2
Cache Yes Speeds up lookups with an LRU cache 3.5.2

Unifying Overlay No Combines several read-only dTables into a single view 3.5.3
Managed Yes Combines read-only and journal dTables into a read/write store 3.5.3
Partition Yes Partitions key space among underlying dTables 3.5.3
Exception No Reroutes rejected values from a specialized store to a general one 3.5.5
Existential No Stores nonexistent values (§3.5.3) separately from others 3.5.6

Transforming Small integer No Trims integer values to smaller byte counts 3.5.4
Delta integer No Stores the difference between integer values 3.5.4
State dictionary No Maps state abbreviations to small integers 3.5.4

Feature ACID transaction Yes Provides full ACID transaction semantics 3.6

Figure 3.6: Summary of dTables. Storage dTables write data on disk; all other classes layer
over other dTables.

transactions only just before reporting success, as is done automatically in the xsyncfs file

system [35].

When requested, Anvil makes the most recent transaction durable in one of two ways,

depending on whether it is using Featherstitch or ext3. With Featherstitch, it uses the

pg_sync API to explicitly request that the storage system flush the change corresponding

to that transaction to disk. With ext3, Anvil instead calls futimes to set the timestamp

on an empty file in the same file system as the data, and then fsync to force ext3 to

end its transaction to commit that change. (Using fsync without the timestamp change is

not sufficient; the kernel realizes that no metadata has changed and flushes only the data

blocks without ending the ext3 transaction.) Even without an explicit request, updates are

made durable within about 5 seconds (the default duration of ext3 transactions), as each

ext3 transaction will make all completed Anvil transactions durable. This makes Anvil

transactions lightweight, since they can be batched and committed as a group.

68

3.4.3 System Journal

Rather than using the transaction library directly, writable dTables use logging primitives

provided by a shared logging facility, the system journal. The main purpose of this shared,

append-only log is to group writes for speed. Any system component can acquire a unique

identifier, called a tag, which allows it to write entries to the system journal. Such entries

are not erased until their owner explicitly releases the corresponding tag, presumably after

the data has been stored elsewhere. Until then, whenever Anvil is started (or on demand),

the system journal will replay the log entries to their owners, allowing them to reconstruct

their internal state. Appends to the system journal are grouped into transactions using the

transaction library, allowing many log entries to be stored quickly and atomically.

To reclaim the space used by released records, Anvil periodically cleans the system

journal by copying all the live records into a new journal and atomically switching to that

version using the transaction library. As an optimization, cleaning is automatically per-

formed whenever the system journal detects that the number of live records reaches zero,

since then the file can be deleted without searching it for live records. In our experiments,

this actually happens fairly frequently, since entire batches of records are relinquished

together during digest operations.

The system journal also supports a “rollover” feature, allowing records originally writ-

ten using one tag to be sent to the owner of a different tag during playback. This enables

several higher-level transaction concepts, like independence and abortability, which are

discussed in Section 3.6.

Writing records from many sources to the same system journal is similar to the way log

data for many tablets is stored in a single physical log in Bigtable [9]; both systems employ

this idea in order to better take advantage of group commit and avoid seeks. Cleaning

the system journal is similar to compaction in a log-structured file system, and is also

69

reminiscent of the way block allocation logs (“space maps”) are condensed in ZFS [72].

3.5 dTables

We now describe the currently implemented dTable types and their uses in more detail.

The twenty-one types are summarized in Figure 3.6. We close with an example Anvil

configuration using many of these dTables together, demonstrating how simple, reusable

modules can combine to implement an efficient, specialized data store.

3.5.1 Basic Storage dTables

The dTables described in this section store data directly on disk, rather than layering over

other dTables. This section presents only some of Anvil’s storage dTables; several others

are described later as uses for them are discussed.

Journal dTable The journal dTable is Anvil’s fundamental writable store. The goal of

the journal dTable is thus to make writes fast without slowing down reads. Scaling to

large stores is explicitly not a goal: large journals should be digested into faster, more

compressed, and easier-to-recover forms, namely read-only dTables. Managed dTables in

our configurations collect writes in journal dTables, then digest that data into other, read-

optimized dTables.

The journal dTable stores its persistent data in the system journal. Creating a new

journal dTable is simple: a system journal tag is acquired and stored in a small file managed

by the transaction library (probably one belonging to a managed dTable). Erasing a journal

dTable requires relinquishing the tag and removing it from the small file. These actions are

generally performed at a managed dTable’s request.

70

Writing data to a journal dTable is accomplished by appending a system journal record

with the key and value. However, the system journal stores records in chronological order,

whereas a journal dTable must iterate through its entries in sorted key order. This mis-

match is handled by keeping an in-memory balanced tree of the entries. When a journal

dTable is initialized during Anvil startup, it requests its records from the system journal

and replays the previous sequence of inserts, updates, and deletes in order to reconstruct

this in-memory state. The memory this tree requires is one reason large journal dTables

should be digested into other forms.

Linear dTable The linear dTable is Anvil’s most basic read-only store. It accepts any

types of keys and values without restriction, and stores its data as a simple file containing

first a 〈key, offset〉 array in key-sorted order, followed by the values in the same order.

(Keys are stored separately from values since most of Anvil’s key types are fixed-size,

and thus can be easily binary searched to allow random access. The offsets point into

the value area.) As with other read-only dTables, a linear dTable is created by passing an

iterator for some other dTable to a create method, which creates a new linear dTable on

disk containing the data from the iterator. The linear dTable’s create method never calls

reject.

Others The memory dTable keeps its data exclusively in memory. When a memory

dTable is freed or Anvil is terminated, the data is lost. Like the journal dTable, it is writable

and has a maximum size limited by available memory. Our test frameworks frequently use

the memory dTable for their iterators: a memory dTable is built up to contain the desired

key-value pairs, then its iterator is passed to a read-only dTable’s create method.

The empty dTable is a read-only table that is always empty. It is used whenever a dTable

or iterator is required by some API, but the caller does not have any data to provide.

71

The unique-string dTable detects duplicate strings in its data and replaces them with

references to a shared table of strings. This approach is similar to many common forms

of data compression, though it is somewhat restricted in that it “compresses” each blob

individually using a shared dictionary.

3.5.2 Performance dTables

These dTables aim to improve the performance of a single underlying dTable stack by

adding indexes or caching results, and begin to demonstrate benefits from layering. For

instance, the Bloom filter dTable improves the performance of nonexistent key lookups by

a factor of 24 in a simple benchmark, and can easily be added to any read-only dTable

stack.

B-tree dTable The B-tree dTable creates a B-tree [4] index of the keys stored in an

underlying dTable, allowing those keys to be found more quickly than by, for example, a

linear dTable’s binary search.2 It stores this index in another file alongside the underlying

dTable’s data. The B-tree dTable is read-only (and, thus, its underlying dTable must also

be read-only). Its create method constructs the index; since it is given all the data up

front, it can calculate the optimal constant depth for the tree structure and bulk load the

resulting tree with keys. This bulk-loading is similar to that used in Rose [43] for a similar

purpose, and avoids the update-time complexity usually associated with B-trees (such as

rebalancing, splitting, and combining pages).

Bloom Filter dTable The Bloom filter dTable’s create method creates a Bloom fil-

ter [5] of the keys stored in an underlying read-only dTable. Like the B-tree dTable, it

stores this auxiliary data in a file alongside the underlying dTable’s data. It responds to

2The asymptotic runtime is the same, but the constant is different: logn x instead of log2 x.

72

a lookup request by taking a 128-bit hash of the key, and splitting it into a configurable

number of indices into a bitmap. If any of the corresponding bits in the bitmap are not

set, the key is guaranteed not to exist in the underlying dTable; this result can be returned

without invoking the underlying table’s lookup algorithm. This is particularly useful for

optimizing lookups against small dTables, such as those containing recent changes, that

overlay much larger data stores, a situation that often arises in Anvil. The Bloom filter

dTable keeps the bitmap cached in memory, as the random accesses to it would not be effi-

cient to read from disk. Like the B-tree dTable, the Bloom filter dTable is able to sidestep

some of the usual problems associated with a classic data structure by being read-only: in

this case, key removal. Section 3.7.2 evaluates the effectiveness of the Bloom filter dTable.

Sliding Window dTable The sliding window dTable eliminates duplicate values by at-

tempting to store only a single copy of each unique value it sees during creation. For data

sets with many repeated values, this can dramatically reduce the disk space used and thus

the I/O bandwidth required to read such data sets. To do this efficiently, it uses a sliding

window approach as seen in the Lempel-Ziv [73] family of data compression algorithms.

When a value not currently in the window is seen, it is stored in a subordinate “data”

dTable indexed by contiguous integer keys (the indexed or array dTables would be good

choices for this). Separately, in a second subordinate “key” dTable, the real key is asso-

ciated with a fixed-size value that is actually the key to the data dTable where the correct

value can be found: either the newly-added value, or a value from earlier in the sliding

window. Reading from sliding window dTables is easy: first the desired key is looked up

in the key dTable, and the value found there is used as a key to look up the real value.

However, it can be expensive to create sliding window dTables, because of the additional

work required to perform the value comparisons during compression. Section 3.7.4 evalu-

ates the utility of this sort of compression, and points out some possible changes to Anvil’s

73

design that would help dTables like the sliding window dTable.

Cache dTable The cache dTable wraps another dTable, caching looked up keys and

values so that frequently- and recently-used keys need not be looked up again. If the un-

derlying dTables perform computationally expensive operations to return requested data,

such as some kinds of decompression, and some keys are looked up repeatedly, a cache

dTable may be able to improve performance. When the underlying dTable supports writ-

ing, the cache dTable does as well: it passes the writes through and updates its cache if

they succeed. Each cache dTable can be configured with how many keys to store; other

policies, such as total size of cached values, would be easy to add.

3.5.3 Unifying dTables

This section describes the overlay and managed dTables in more detail, explaining how

they efficiently unify multiple underlying dTables into a seamless-appearing whole. These

dTables are of particular importance because they appear in nearly every dTable config-

uration, playing a central role. It is therefore important that they be implemented as effi-

ciently as possible; their design is one of Anvil’s contributions. This section also describes

the partition dTable, which is unusual in that it may often appear above a managed dTable

in configuration graphs.

Overlay dTable The overlay dTable combines the data in several underlying dTables

into a single logical dTable. It does not store any data of its own. An overlay dTable is

not itself writable, although writes to underlying dTables will be reflected in the combined

data. Thus, overlays must deal with two main types of access: keyed lookup and iteration.

Keyed lookup is straightforward: the overlay dTable just checks the underlying dTables

in order until a matching key is found, and returns the associated value. However, a dTable

74

early in the list should be able to “delete” an entry that might be stored in a later dTable. To

support this, the remove implementation in a writable dTable normally stores an explicit

“nonexistent” value for the key. These values resemble Bigtable’s deletion entries and the

whiteout directory entries of Unionfs [67]. Storage dTables are responsible for translating

nonexistent values into the appropriate persistent bit patterns, or for rejecting nonexistent

values if they cannot be stored. A nonexistent value tells the overlay dTable to skip later

dTables and immediately report that the key’s value does not exist. Creating a read-only

dTable from the writable dTable will copy the nonexistent value just like any other value.

When a key-value pair is ignored by an overlay dTable because another value for the key

exists earlier in the list, we say that the original key-value pair has been shadowed.

Composing an overlay dTable iterator is more difficult to do efficiently. Keys from

different underlying iterators must be interleaved together into sorted order, and keys that

have been shadowed must be skipped. However, we want to minimize the overhead of

doing key comparisons – especially duplicate key comparisons – since they end up being

the overlay’s primary use of CPU time. The overlay iterator therefore maintains some

additional state for each underlying iterator: primarily, whether that iterator points at the

current key, a shadowed key, an upcoming key, or a previous key. This information helps

the overlay iterator to avoid many duplicate comparisons by partially caching the results of

previous comparisons. (A more advanced version might also keep the underlying iterators

sorted by the next key each will output.)

Managed dTable The managed dTable plays a central role in most dTable configura-

tions, coordinating the operation of subordinate dTables to hide the complexity of their

interactions. It keeps a writable journal dTable to absorb writes, and periodically digests it

(creating new read-only dTables) to keep memory usage reasonable and allow space in the

system journal to be reclaimed. Less frequently, it also combines several read-only dTables

75

together, improving access times and allowing shadowed, obsolete data to be removed. It

must deal with scheduling these operations at reasonable intervals, since performing them

too frequently is expensive, yet postponing them too long will degrade overall system per-

formance. Fortunately, digesting and combining can safely be done in the background,

and the managed dTable contains special support to make this possible. By handling these

coordination tasks, and interfacing with the Anvil transaction library, the managed dTable

relieves most other dTables of any need to worry about transactions – and, in fact, consis-

tency in general.

The managed dTable stores its metadata as well as the files for its underlying dTables

in a directory. In addition to the journal dTable to which it sends all writes, the managed

dTable keeps zero or more other dTables which, along with the journal dTable, are com-

posed using an overlay dTable. A maintain method runs scheduled maintenance tasks:

digesting the journal dTable to form a new read-only dTable, or combining several dTables

to form a single new dTable. (Currently, client code is responsible for periodically calling

this method.)

Digesting The current managed dTable schedules digest operations at fixed, config-

urable intervals. A digest will occur soon after the interval has elapsed, unless the journal

dTable is empty. To digest the log, an iterator for the journal dTable is passed to a suitable

create method to create a new read-only dTable. Once the new dTable is created, the

transaction library is used to write new metadata referencing it and the journal dTable’s

system journal tag is relinquished (an operation that also uses the transaction library); a

new system journal tag is also allocated for use by subsequent writes. This operation is

similar to system journal cleaning, in that the actual data is written non-transactionally,

but the transaction library is used to atomically “swap in” the newly written data.

76

Combining Combines are more expensive than digests, since they must scan possibly-

uncached dTables and create single, larger versions; further, the overlay dTable necessary

to merge data from uncombined dTables can be costly as well. Still, combines must be

done often enough to keep the number of read-only dTables reasonable: the more there

are, the less efficient overlaying them will be and the slower lookups will get. To amor-

tize the cost of combining, combines are scheduled using a “ruler function” somewhat

reminiscent of generational garbage collection. A combine operation is performed ev-

ery k digests (k = 4 in our current implementation). The combine takes as input the

most recent k digests, plus a number of older dTables according to the sequence xi =

0,1,0,2,0,1,0,3,0,1,0,2, . . . , where xi is one less than the number of low-order zero bits

in i. This performs small combines much more frequently than large combines, and the av-

erage number of dTables grows at most logarithmically with time. The result is very similar

to Lester et al.’s “geometric partitioning” mechanism [24]. (A more advanced version of

the managed dTable might involve more carefully tuned parameters, or decide when to

perform digests and combines based on, for instance, the amount of data involved.) Com-

bining itself is very similar to digesting: an overlay dTable is created to merge the dTables

to be combined, and an iterator for that is passed to the appropriate create method. Af-

terward, appropriate metadata is updated and then-unreferenced source dTables marked

for deletion.

Obsolete Data When multiple dTables are combined, older data for an updated key

is automatically left out since the overlay dTable’s iterator will skip it. However, if the key

is associated with a nonexistent value, indicating that it has been deleted, it may be possible

to remove the key entirely during a combine. To allow createmethods to determine when

this is safe, the managed dTable passes an extra parameter to them: a “shadow dTable”

that contains all those keys that might need to be shadowed by the nonexistent values. The

77

C

B

A

1: NE 2: NE 3: NE 4: baz

2: NE 3: foo 4: foo

2: baz 3: baz

Figure 3.7: dTables C, B, and A in an overlay configuration; explicitly nonexistent values
are shown as “NE.” Digesting C should keep the nonexistent value for key 3, but not those
for keys 1 and 2, since the combination of the other dTables already hold no values for
those keys (B takes precedence over A). Combining C and B, on the other hand, must keep
the nonexistent values for both keys 2 and 3. The arrows point from required nonexistent
values to their shadowed versions.

shadow dTable is simply an overlay dTable that merges all the dTables that are not being

combined, but that the newly created dTable might shadow. The create method can then

look up keys with nonexistent values in the shadow dTable to see if the explicit nonexistent

values are still required. Figure 3.7 shows an example set of dTables to help illustrate this

algorithm.

Background Operation A managed dTable’s digesting and combining can be safely

done in a background thread, keeping these potentially lengthy tasks from blocking other

processing. As a combine operation reads from read-only dTables and creates a new dTable

that is not yet referenced, the only synchronization required is at the end of the combine

when the newly-created dTable replaces the source dTables. Digests read from writable

journal dTables, but can also be done in the background by creating a new journal dTable

and marking the original journal dTable as “effectively” read-only before starting the back-

ground digest. Such read-only journal dTables are treated by a managed dTable as though

they were not journal dTables at all, but rather one of the other read-only dTables.

The current managed dTable implementation allows only one digest or combine opera-

tion to be active at any time, whether it is being done in the background or not. Background

digests and combines could also be done in a separate process, rather than a separate

thread; doing this would avoid the performance overhead incurred by thread safety in the

78

C library. Section 3.7.5 evaluates the costs associated with digesting and combining, and

quantifies the overhead imposed by using threads.

Partition dTable The partition dTable, like the overlay dTable, joins several underlying

dTables together to appear as a single dTable. However, rather than storing the same keys

in each subordinate dTable and overlaying the values, it divides the key space into config-

ured regions and stores only part of the data set in each subordinate dTable. Its iterators

simply concatenate the data from subordinate dTables iterators, rather than interleaving it

based on keys like overlay dTable iterators. As a writable dTable, it is created empty, and

populated later; it sends writes to the appropriate subordinate dTables, which are also ex-

pected to be writable. It is one of only three dTables (the others being the cache dTable and

ACID transaction dTable) that might normally appear above a managed dTable in a con-

figuration graph, as it can be handy to split a large data set into smaller pieces that can be

independently digested or combined – allowing greater parallelization of these tasks. (This

parallelization opportunity builds on multiple managed dTables’ background digesting: a

partition dTable, called from a single thread, can start several background digests without

any special code to do so.) Section 3.7.2 evaluates the overhead and benefits provided by

the partition dTable.

3.5.4 Specialized dTables

Although a linear dTable can store any keys and values, keys and values that obey some

constraints can often be stored in more efficient ways. For instance, if all the values are

the same size, then file offsets for values can be calculated based on the indices of the

keys and need not be stored. Alternately, if the keys are integers and are likely to be

consecutive, the binary search can be optimized to a constant time lookup by using the

keys as indices and leaving “holes” in the file where there is no data. Or, if the values

79

are likely to compress well with a specific compression algorithm, that algorithm can be

applied. Using techniques like these, when appropriate, can significantly reduce file size,

runtime performance, or both.

This section describes several of Anvil’s specialized dTables that efficiently store spe-

cific kinds of data. The array dTable, fixed-size dTable, and indexed dTable are storage

dTables (they store data on disk themselves); the rest layer over other dTables and trans-

form the data. This latter class of specialized dTable can be particularly potent and is one

of the big advantages of a modular design like Anvil’s: several such layered dTables can

be combined and added on top of any underlying dTables, making it easy to build very

specialized dTable configurations from more general pieces.

Array dTable The array dTable is specialized for storing fixed-size values associated

with contiguous (or mostly contiguous) integer keys. After a short header, which contains

the initial key and the value size, an array dTable file contains a simple array of values.

Each value is optionally preceded by a tag byte to indicate whether the following bytes

are actually a value or merely a hole to allow the later values to be in the right place

despite the missing key. Without the tag byte, specific values must be designated as the

ones to be used to represent nonexistent values and holes, or they will not be supported.

(And, in their absence, the array dTable’s create method will fail if a nonexistent value

or non-contiguous key is encountered, respectively.)

Fixed-size dTable The fixed-size dTable is like the array dTable in that it can only store

values of a fixed size. However, it accepts all Anvil-supported key types, and does not

require that they be contiguous. While the direct indexing of the array dTable is lost, the

size advantage of not saving the value size with every entry is retained.

80

Indexed dTable Like the fixed-size dTable, the indexed dTable is more flexible than the

array dTable, but in the other dimension: it can only store contiguous integer keys, but it

can store any size values. Like the array dTable it does not need to search to find keys, but

like the linear dTable the key array contains only pointers to the values. Each value lookup

thus takes two reads, rather than one, but values are free to take on any size as a result.

Small Integer dTable The small integer dTable is designed for values that are small

integers. It requires that all its input values be 4 bytes (32 bits), and interprets each as an

integer in the native endianness. It trims each integer to a configured number of bytes (one

of 1, 2, or 3), rejecting values that do not fit in that size, and stores the resulting converted

values in another dTable.

Delta Integer dTable Like the small integer dTable, the delta integer dTable works only

with 4-byte values interpreted as integers. Instead of storing the actual values, it computes

the difference between each value and the next and passes these differences to a dTable

below. If the values do not usually differ significantly from adjacent values, the differences

will generally be small integers – perfect for then being stored using a small integer dTable.

Storing the differences, however, causes problems for seeking to random keys. The

entire table, from the beginning, would have to be consulted in order to reconstruct the

appropriate value. To address this problem, the delta integer dTable also keeps a separate

“landmark” dTable, which stores the original values for a configurable fraction of the keys.

To seek to a random key, the landmark dTable is consulted, finding the closest landmark

value. The delta dTable is then used to reconstruct the requested value starting from the

landmark key.

State Dictionary dTable Dictionary dTables compress data by transforming user-friendly

values into less-friendly values that require fewer bits. As a toy example, Anvil’s state dic-

81

tionary dTable translates U.S. state postal codes (CA, MA, etc.) to and from one-byte

numbers. During creation, it translates input postal codes into bytes and passes them to

another dTable for storage; during reading, it translates values returned from that dTable

into postal codes. The array or fixed-size dTables are ideally suited as subordinates to the

state dictionary dTable, especially (in the case of the array dTable) if we use some of the

remaining, unused values for the byte to represent holes and nonexistent values.

3.5.5 Exception dTable

The exception dTable takes advantage of Anvil’s modularity and iterator rejection to effi-

ciently store data in specialized dTables without losing the ability to store any value. This

can improve the performance or storage space requirements for tables whose common

case values fit some constraint, such as a fixed size.

Like an overlay dTable, an exception dTable does not store any data of its own; it

merely combines data from two subordinate dTables into a single logical unit. These are

a general-purpose dTable, such as a linear dTable, which stores exceptional values, and a

specialized dTable, such as an array dTable, which is expected to hold the majority of the

dTable’s data. On lookup, the exception dTable checks the special-purpose dTable first. If

there is no value there, it assumes that there is also no exception, and need not check. (It

ensures that this will be the case in its create method.) If there is a value, and it matches

a configurable “exception value,” then it checks the general-purpose dTable. If a value is

found there, then it is used instead.

The exception dTable’s create method wraps the source iterator in an iterator of

its own, adding a reject method that collects rejected values in a temporary memory

dTable. This wrapped iterator is passed to the specialized dTable’s create method. When

the specialized dTable rejects a value, the wrapped iterator stores the exception and returns

82

the configurable exception value to the specialized dTable, which stores that instead. The

general-purpose dTable is later created by digesting the temporary memory dTable.

3.5.6 Existential dTable

Like the exception dTable, the existential dTable uses two subordinate dTables to store

data, keeping some values in one and other values in the other. However, instead of using

the rejection mechanism to determine which values to store in each, it has a built-in policy:

it stores explicitly nonexistent values in one dTable, and all other values in the other. This

can be useful to keep nonexistent values out of specialized data stores that, while capable

of storing them, would store them inefficiently. (The fixed dTable, for instance, is such a

dTable.)

The existential dTable is unique in that once created, its job is entirely done by other

dTables: at runtime, its factory does not instantiate a specific existential dTable class.

Rather, the underlying dTables are instantiated, and a regular overlay dTable is used to

combine them. The existential dTable’s create method is what does most of the work,

using wrapper iterators to filter the source iterator while passing it to the subordinate dTa-

bles’ create methods.

3.5.7 Example Configurations

To show how one might build an appropriate configuration for a specific use case, we work

through two simple examples that demonstrate Anvil’s modularity and configurability. In

each example, we will first build a simple dTable configuration to store the data. We will

then consider potential issues with it, like performance problems under certain workloads.

Finally, we will examine ways in which the configuration can be improved to address the

problems, and build a revised dTable configuration.

83

First, suppose we want to store the (U.S.) states of residence of customers for a large

company. The customers have mostly sequential numeric IDs, and occasionally move be-

tween states. We start with a managed dTable, since nearly every Anvil configuration needs

one to handle writes. This automatically brings along a journal dTable and overlay dTable,

but we must configure it with a read-only dTable. Since there are many customers, but

they only occasionally move, we are likely to end up with a very large data set but sev-

eral smaller read-only “patches” to it (the results of digested journal dTables). Since most

keys looked up will not be in the small dTables, we add a Bloom filter dTable to optimize

nonexistent lookups. Underneath the Bloom filter dTable, we use a B-tree dTable to speed

up successful lookups, reducing the number of pages read in from disk to find each record.

To finish our first attempt at a configuration for this scenario, we use a linear dTable under

the B-tree dTable. This configuration is shown in Figure 3.8.

Considering only the way the data is arranged on disk by this configuration, we might

expect to get a data store not unlike this using a more traditional database back end. How-

ever, even with the B-tree index, this configuration will spend a lot of time locating keys

during lookups. This is a shame, since aside from the occasional international customer,

the data is fixed-size and could be stored much more efficiently in an array using the

mostly-sequential customer IDs as the index. To make this possible, we can use the state

dictionary dTable combined with an exception dTable for international customers. We can

then use an array dTable under the state dictionary dTable, since the state codes it will be

asked to store will always be a fixed size. (And there will be enough unused values for us

to configure the array dTable to use two of them to store holes and nonexistent values.) We

could place these dTables under the B-tree dTable, but since a B-tree index of an array is

unnecessary, we instead insert the exception dTable directly under the Bloom filter dTable.

Finally, we use the original B-tree dTable subgraph as the generic dTable for the exception

dTable, used to store the international customer data.

84

Managed dTable

Overlay dTable

 overlay

Journal dTable

 journal

Bloom dTable

 read-only

B-tree dTable

Linear dTable

Figure 3.8: A simple dTable graph for the
customer state example.

Managed dTable

Overlay dTable

 overlay

Journal dTable

 journal

Bloom dTable

 read-only

Exception dTable

State Dict. dTable

special

B-tree dTable

 generic

Array dTable
hole=254, NE=255 Linear dTable

Figure 3.9: An example dTable graph for
storing U.S. states efficiently, while still al-
lowing other locations to be stored.

This configuration is shown in Figure 3.9, although at runtime, the managed dTable

might create several Bloom filter dTable instances, each of which would then have a copy

of the subgraph below.

In a different scenario, this configuration might be just a single column in a column-

based store. To see how such a configuration might look, we work through a second exam-

ple. Suppose that in addition to updating the “current state” table above, we wish to store

a log entry whenever a customer moves. Each log entry will be identified by a monoton-

ically increasing log ID, and consist of the pair 〈timestamp, customer ID〉. Additionally,

customers do not move at a uniform rate throughout the year – moves are clustered at

specific times of the year, with relatively few at other times.

We start with a column cTable, since we will want to use different dTable configura-

tions for the columns. For the second column, we can use a simple configuration consisting

of a managed dTable and array dTables, since the customer IDs are fixed-size and the log

IDs are consecutive.

The first column is more interesting. A well-known technique for storing timestamps

85

efficiently is to store the differences between consecutive timestamps, since they will often

be small. We therefore begin with a managed dTable using delta integer dTables. The delta

integer dTable needs a landmark dTable, as mentioned in Section 3.5.4; we use a fixed

dTable as the values will all be the same size. But merely taking the difference in this case

is not useful unless we also store the differences with a smaller amount of space than the

full timestamps, so we connect the delta integer dTable to a small integer dTable. Finally,

we use an array dTable under the small integer dTable to store the consecutively-keyed

small integers.

This initial configuration works well during the times of year when many customers

are moving, since the differences in timestamps will be small. However, during the other

times of the year, when the differences are large, the delta integer dTable will produce

large deltas that the small integer dTable will refuse to store. To fix this problem, we need

an exception dTable between the delta integer dTable and the small integer dTable. Finally,

we can use a fixed dTable to store the exceptional values – that is, the large deltas – as they

are all the same size. The revised configuration, complete with the configuration for the

second column and the containing column cTable, is shown in Figure 3.10.

3.6 Abortable and ACID Transactions

The basic transactions described in Section 3.4 provide atomicity and durability (the A and

D in ACID), but cannot provide the other properties. Although the C stands for “consis-

tency” – which as we have defined it the transaction library already provides – in this con-

text it has a different meaning and refers to preservation of database-specific constraints,

requiring that transactions that would violate such constraints be aborted. To change the pH

of Anvil’s basic transactions to make them more acidic, we need to be able to have multi-

ple, isolated transactions in progress simultaneously, and to be able to abort them. Despite

86

Column 1 Column 2

Column cTable

Managed dTable

column 1

Managed dTable

 column 2

Overlay dTable

 overlay

Journal dTable

 journal

Delta Int dTable

 read-
 only

Fixed dTable

landmark

Exception dTable

Small Int dTable
size:1

special

Fixed dTable

 generic

Array dTable
hole=254, NE=255

Overlay dTable

 overlay

Journal dTable

journal

Array dTable

 read-only

Figure 3.10: An example configuration for a cTable storing differentially timestamped log
entries consisting of fixed-size customer IDs.

being one of the later features implemented in Anvil, abortable transactions fit right in – in

fact, the modular design made it a very easy addition. In some sense, abortable transactions

are themselves a modular feature, implemented within the managed dTable but supported

by lower-level functionality.

Each abortable transaction creates its own private journal dTable in which to store its

changes, and uses a private overlay dTables to layer them over the “official” stores. The

overhead to create these dTables is small, as creating a new journal dTable is a fast oper-

ation: it has no files on disk, and merely involves incrementing an integer and allocating

object memory. (A simple microbenchmark that creates journal and overlay dTables and

then destroys them can create about 600,000 such pairs per second on our benchmark ma-

87

chine.) During the transaction, changes are written to the system journal, just as normal

changes that are not in an abortable, independent transaction, but with a different system

journal tag. To abort such a transaction, the temporary journal dTable is discarded, and the

overlay dTable destroyed. To commit it, the system journal’s rollover feature is used. A

small record is written to the system journal, listing the system journal tag for the tempo-

rary journal dTable and the tag of the current “main” journal dTable. Then the in-memory

balanced trees of the two journal dTables are merged, with the abortable transaction’s data

taking precedence. The transaction’s data can then be digested as usual later on, as though

it had always been part of the main journal dTable. If the system is shut down (cleanly

or otherwise) before the system journal is filtered, these actions will be replayed: a tem-

porary journal dTable will be created for the transaction, populated, and merged into the

main journal dTable.

These abortable transactions provide semantics like full ACID transactions that never

contain any reads. Although Anvil’s abortable transactions can be aborted, nothing ever

compels them to do so. The order in which they commit determines what data will exist in

the resulting data store. However, Anvil’s modular design allows the read/write tracking

required to detect colliding transactions to be done in a separate dTable, making it possible

to implement full ACID transactions as a separate dTable. The ACID transaction dTable,

evaluated in Section 3.7.7, does exactly that, forcing abortable transactions to abort when

it detects read-write or write-write collisions. It can be added at the top of any dTable

configuration to provide full read/write ACID transactions, but can be left off when the

additional cost to detect collisions is not justified.

As mentioned above, abortable transactions were surprisingly easy to add, and took

significant advantage of Anvil’s modular design. The rollover feature had to be added to

the system journal and journal dTables to support it, but beyond that the changes were very

small: about 160 lines of code in the managed dTable. That abortable transactions fit so

88

cleanly and easily into the modular design provides additional evidence that it may be a

good design; it also resonates with the overall hypothesis that new features can be added

to modular data storage systems with little incremental effort. Using these abortable (or

full ACID) transactions is not without cost, however. Compared to using only basic trans-

actions, abortable transactions must allocate two additional dTable objects in memory,

write one additional record to the system journal, and, most significantly, merge the jour-

nal dTable balanced trees to commit the transaction. ACID transactions must additionally

detect colliding reads and writes.

Anvil implements one important optimization, however: the journal dTables used to

store the data local to each transaction do not actually keep a balanced tree for the keys

unless an iterator is requested by the application. Rather, they keep a hash map of the

keys, which is faster, and only convert it to a balanced tree if in-order access to the keys

is required. (Normal journal dTables will always be eventually asked to traverse the keys

in order during a digest operation, but transaction-local journal dTables will be rolled over

– not digested.) This avoids duplicating the work of inserting each key into a balanced

tree unless the application requires an iterator inside the transaction. The performance of

Anvil’s abortable transactions, including this optimization, is evaluated in Section 3.7.6.

3.6.1 Concurrent Access

Along with background digestion, which required the addition of synchronization code

in lower-level parts of Anvil to support concurrent access to core data classes, Anvil’s

abortable transactions also provide most of the mechanisms that would be required to

support concurrent access by multiple threads. The major challenges in implementing the

remaining pieces would seem to be shared with any system supporting concurrent trans-

actions, namely detecting conflicts and adding locks. Unfortunately, some concurrency

89

disciplines seem perhaps difficult to add as separate modules; for example, every writable

dTable might require changes to support fine-grained record locking.

3.7 Evaluation

Anvil decomposes a back-end storage layer for structured data into many fine-grained

modules which are easy to implement and combine. Our performance hypothesis is that

this modularity comes at low cost for “conventional” workloads, and that simple config-

uration changes targeting specific types of data can provide significant performance or

storage size improvements. This section evaluates Anvil to test our hypothesis and pro-

vides experimental evidence that Anvil provides the consistency and durability guarantees

we expect.

All tests were run on an HP Pavilion Elite D5000T with a quad-core 2.66 GHz Core 2

CPU, 8 GiB of RAM, and a Seagate ST3320620AS 320 GB 7200 RPM SATA2 disk

attached to a SiI 3132 PCI-E SATA controller. Tests use a 24 GiB ext3 file system (and the

ext3 version of the transaction library) and the Linux 2.6.24 kernel with the Ubuntu v8.04

distribution. All timing results are the mean over eight runs.

3.7.1 Conventional Workload

For our conventional workload, we use the DBT2 [11] test suite, which is a “fair usage

implementation”3 of the TPC-C [56] benchmark. In all of our tests, DBT2 is configured

to run with one warehouse for 15 minutes; this is long enough to allow Anvil to do many

digests, combines, and system journal cleanings so that their effect on performance will

be measured. We also disable the 1% random rollbacks that are part of the standard bench-

3This is a legal term. See the DBT2 and TPC websites for details.

90

mark, as SQLite’s transaction abort mechanism does not easily lend itself to implementa-

tion with Anvil’s abortable transactions. 4 We modified SQLite, a widely-used embedded

SQL implementation known for its generally good performance, to use Anvil instead of its

original B-tree-based storage layer. We use a simple dTable configuration: a linear dTable,

layered under a B-tree dTable (for combines but not digests), layered under the typical

managed and journal dTable combination.

We compare the results to unmodified SQLite, configured to disable its rollback jour-

nal, increase its cache size to 128 MiB, and use only a single lock during the lifetime of

the connection. We run unmodified SQLite in three different synchronicity modes: full,

which is fully durable (the default); normal, which has “a very small (though non-zero)

chance that a power failure at just the wrong time could corrupt the database”; and async,

which makes no durability guarantees. We also compare to MySQL using two of its “stor-

age engines:” innodb, which is fully durable; and MyISAM, which makes no durability

guarantees. We run SQLite with Anvil in two different modes: fsync, which matches the

durability guarantee of the original SQLite full mode by calling fsync at the end of every

transaction, and delay, which allows larger group commits as described in Section 3.4.2.

Both of these modes, as well as the first two unmodified SQLite modes and MySQL’s

innodb engine, provide consistency in the event of a crash; SQLite’s async mode and

MySQL’s MyISAM engine do not.

The DBT2 test suite issues a balance of read and write queries typical to the “order-

entry environment of a wholesale supplier,” and thus helps demonstrate the effectiveness of

using both read- and write-optimized structures in Anvil. In particular, the system journal

allows Anvil to write more data per second than the original back end without saturating

4SQLite supports only one outstanding transaction at a time, and makes many assumptions based on this
fact that are difficult to satisfy with Anvil’s more flexible abortable transactions. For instance, it assumes
that all extant iterators automatically “enter” each transaction as soon as it starts, and that they will continue
to work after it commits.

91

TPM Disk util. Avg. reqsz (KiB) Writes/s
Original, full 905 94.5% 8.52 437.2
Original, normal 920 93.2% 8.69 449.1
Original, async 3469 84.7% 8.73 332.4
MySQL, innodb 1280 84.1% 30.43 640.4
MySQL, MyISAM 4010 74.2% 9.46 445.4
Anvil, fsync 4875 29.6% 24.77 1032.4
Anvil, delay 7835 2.4% 346.71 9.9

Figure 3.11: Results from running the DBT2 test suite. TPM represents “new order Trans-
actions Per Minute”; larger numbers are better. Disk util. is disk utilization, Avg. reqsz the
average size in KiB of the issued requests, and Writes/s the number of write requests is-
sued per second. I/O statistics come from the iostat utility and are averaged over samples
taken every minute.

the disk, because its writes are more contiguous and do not require as much seeking. (Anvil

actually writes much less in delay mode, however: the average request size increases by

more than an order of magnitude, but the number of writes per second decreases by two

orders.) For this test, Anvil handily outperforms SQLite’s default storage engine while

providing the same durability and consistency semantics. Additionally, SQLite using Anvil

as its back end – even in fsync mode – outperforms MySQL using either of its storage

engines. The performance advantage of read- and write-optimized structures far outweighs

any cost of separating these functions into separate modules.

3.7.2 Microbenchmarks

We further evaluate the performance consequences of Anvil’s modularity by stress-testing

Anvil’s most characteristic modules, namely those dTables that layer above other storage

modules.

Exception and Specialized dTables To determine the cost and benefit associated with

the exception dTable, we run a model workload with several different dTable configura-

tions and compare the results. For our workload, we first populate a managed dTable with

92

Digest (s) Lookup (s) Size (MiB)
linear 2.19 66.14 49.6
btree 2.68 24.76 80.2
array 1.77 9.12 22.9
excep+array 1.84 9.39 23.0
excep+fixed 1.89 60.06 34.4
excep+btree+fixed 2.40 17.22 65.0

Figure 3.12: Exception dTable microbenchmark. A specialized array dTable outperforms
the general-purpose linear dTable, even if the latter is augmented with a B-tree index.
When most, but not all, data fits the specialized dTable’s constraints, the exception dTable
achieves within 3% of the specialized version while supporting any value type.

4 million values, a randomly selected 0.2% of which are 7 bytes in size and the rest 5

bytes. We then digest the log, measuring the time it takes to generate the read-only dTable.

Next we time how long it takes to look up 2 million random keys. Finally, we check the

total size of the resulting data files on disk.

We run this test with several read-only dTable configurations. The linear configuration

uses only a linear dTable. The btree configuration adds a B-tree dTable to this. The array

configuration uses an array dTable instead, and, unlike the other configurations, all values

are 5 bytes. The remaining configurations use an exception dTable configured to use a

linear dTable as the generic dTable. The excep+array configuration uses a 5-byte array

dTable as the specialized dTable; the excep+fixed configuration uses a 5-byte fixed dTable.

Finally, the excep+btree+fixed configuration uses a B-tree dTable over a fixed dTable. The

results are shown in Figure 3.12.

Comparing the linear and btree configurations shows that a B-tree index dramatically

improves random read performance, at the cost of increased size on disk. For this exam-

ple, where the data is only slightly larger than the keys, the increase is substantial; with

larger data, it would be smaller in comparison. The array configuration, in comparison,

offers a major improvement in both speed and disk usage, since it can locate keys directly,

without search. The excep+array configuration degrades array’s lookup performance by

93

Lookup Scan
direct 141.2 s 15.63 s
overlay 149.1 s 17.04 s
overhead 5.59% 9.02%

Figure 3.13: Overlay dTable microbenchmark: looking up random keys and scanning ta-
bles with and without an overlay. Linear scan overhead is larger percentagewise; a linear
scan’s sequential disk accesses are so much faster that the benchmark is more sensitive to
CPU usage.

only approximately 3% for these tests, while allowing the combination to store any data

value indiscriminately. Thus, Anvil’s modularity here offers substantial benefit at low cost.

The excep+fixed configurations are slower by comparison on this benchmark – the fixed

dTable must locate keys by binary search – but could offer substantial disk space savings

over array dTables if the key space was more sparsely populated.

Overlay dTable All managed dTable reads and combines go through an overlay dTable,

making it performance sensitive. To measure its overhead, we populate a managed dTable

with 4 million values using the excep+array configuration. We digest the log, then insert

one final key so that the journal dTable will not be empty. We time how long it takes to

look up 32 million random keys, as well as how long it takes to run an iterator back and

forth over the whole dTable four times. (Note that the same number of records will be read

in each case.) Finally, we open the digested exception dTable within the managed dTable

directly, thus bypassing the overlay dTable, and time the same actions. (As a result, the

single key we added to the managed dTable after digesting the log will be missing for

these runs.)

The results are shown in Figure 3.13. While the overhead of the linear scans is less

than that of the random keys, it is actually a larger percentage: the disk accesses are largely

sequential (and thus fast) so the CPU overhead is more significant in comparison. As in the

last test, the data here is very small; as the data per key becomes larger, the CPU time will

94

Populate (s) Digest (s) Lookup (s) Scan (s)
single 15.2 3.8 34.9 6.8
partition 14.2 2.1 31.7 7.7

Figure 3.14: Partition dTable microbenchmark: various tasks with and without a partition
dTable.

be a smaller percentage of total time. Nevertheless, this is an important area where Anvil

stands to improve. Since profiling indicates key comparison remains expensive, the linear

access overhead, in particular, might be reduced by storing precomputed key comparisons

in the overlay dTable’s iterator, rather than recalculating them each time next is called.

Partition dTable Like the overlay dTable, the partition dTable unifies underlying dTa-

bles at the cost of adding an additional layer of indirection. To measure the cost of that

layer, we compare two dTable configurations: one using a partition dTable with four par-

titions, each being a managed dTable with subordinate linear dTables, and one using a

single managed dTable directly. We populate each with 4 million values between 75 and

85 bytes, then digest the log; when using the partition dTable, the digest proceeds in paral-

lel for each partition. We then look up 1 million random keys and scan an iterator forward

over the data three times.

The results, shown in Figure 3.14, show that the overhead is in fact often less than the

benefit of using multiple underlying dTables. The random lookup performance and digest

performance both show substantial improvement; in the case of the random lookups, this

is primarily due to more caching as a side effect of having more dTables. (Linear dTables

each contain a file cache. Decreasing the size of each cache so the total size is the same as

in the unpartitioned case makes the performance match.) The improvement in digest time,

however, is due to the parallelization made possible by the partition dTable. A similar

test forcing the digest operations to be executed serially takes as long as the unpartitioned

version.

95

Even keys (s) Odd keys (s) Mixed keys (s)
direct 31.88 26.04 29.15
bloom 33.47 1.09 17.30

Figure 3.15: Bloom filter dTable microbenchmark. A Bloom filter dTable markedly im-
proves lookup times for nonexistent (odd) keys while adding only a small overhead for
keys that do exist.

Bloom Filter dTable To evaluate the Bloom filter dTable’s effectiveness and cost, we

set up an integer-keyed linear dTable with values for every even key in the range 0 to 8

million. (We configure the Bloom filter dTable’s hash to produce five 25-bit-long indices

into a 4 MiB bitmap.) We then look up 1 million random even keys, followed by 1 million

random odd keys, either using a Bloom filter dTable or by accessing the linear dTable

directly. The results are shown in Figure 3.15. The Bloom filter dTable adds about 5%

overhead when looking up existing keys, but increases the speed of looking up nonexistent

keys by nearly a factor of 24. For workloads consisting of many queries for nonexistent

keys, this is definitely a major benefit, and the modular dTable design allows it to be used

nearly anywhere in an Anvil configuration.

To summarize the microbenchmarks, Anvil’s layered dTables add from 3% to 10%

overhead for lookups. However, their functionality can improve performance by up to

24 times for some workloads. The combination of small, but significant, overhead and

occasional dramatic benefit argues well for a modular design.

3.7.3 Nonexistent Values

From the point of view of storage dTables like the linear dTable, Anvil’s explicit nonexis-

tent values are actually quite similar to normal (“extant”) values. They key must be stored

(if applicable), and mapped to the nonexistent value. In some cases, like the fixed and ar-

ray dTables, there is no choice but to allocate just as much space as any extant value to

96

store these values. In layered performance dTables, like the B-tree and Bloom filter dTa-

bles, keys with nonexistent values must be treated just like keys with extant values. Since

this could potentially present significant overhead, we measure a relatively delete-heavy

workload to determine how well the system handles this difficult input.

Due to the different ways that different dTables store and process data, we expect the

overhead associated with nonexistent values to differ depending on the dTables involved.

Some, like the Bloom filter dTable, we expect to be highly affected, as they must treat

nonexistent values exactly the same as extant values. Others, like the linear dTable, we

expect to be less affected.

To test this, we use two related workloads: first, a 50/50 mix of inserts and deletes to

random integer keys in the range [0,4000000), 12 million operations total (the “reference”

workload). Second, the exact same sequence of operations, but skipping any operations

(both insert and delete) of keys that, in the reference dTable, did not exist at the end of the

test – that is, they had been created and then deleted (the “oracle” workload). We run each

workload in two different configurations: one using a Bloom filter dTable and linear dTable

together, and one with only the linear dTable. (All configurations use a managed dTable

and overlay dTable.) During the workloads we periodically run digests, forcing data to

become read-only so that (in the case of the reference workloads) nonexistent values will

be necessary. It is not the performance of the workloads themselves that we are interested

in measuring, however. The oracle workloads are “cheating” a little too much for that to be

a worthwhile comparison: not only do they not have the explicit nonexistent values that we

seek to avoid, but they never inserted the original values either. Instead, these workloads

are meant to create data stores that differ only in their internal structure, but which contain

identical logical data.

On each of these data stores, we then look up 12 million random keys. We also test

the effectiveness of the Bloom filters, by calculating the percentage of nonexistent keys –

97

Lookup (s) Bloom Filter Effectiveness Size (MiB)
reference, Bloom filter 199.8 89.7% 75.2
oracle, Bloom filter 141.5 100.0% 58.5
reference, linear only 933.0 N/A 51.1
oracle, linear only 1011.2 N/A 34.5

Figure 3.16: Effect of nonexistent values on lookup performance and data size after a
delete-heavy workload. The oracle Bloom filter effectiveness is actually slightly less than
100%, but with rounding is listed as 100%.

both keys that don’t exist at all and those that have explicit nonexistent values – that the

Bloom filters can successfully detect. (These are approximately the ones that don’t exist at

all, save a very small handful of genuine hash collisions in the Bloom filters.) The results

are shown in Figure 3.16.

The reference workload generates about 1.9 million extant values, 878,000 nonexis-

tent values, and 1.2 million keys that are never set. (Recall that we are only working with

4 million keys total.) Even with such a sizeable fraction of nonexistent values, the ef-

fectiveness of the Bloom filters remains at nearly 90%, and the lookups take only 41%

longer. Normally, we would not expect workloads to consist of 50% deletes, nor would we

force the managed dTable to digest but not combine – combines being the mechanism by

which nonexistent values can be merged with the values they cover, and removed. Under

a less-challenging workload, the effect of nonexistent values would be less significant.

The Bloom filter dTable exhibits relatively worst-case performance with respect to

nonexistent values, since from its point of view, a key with a nonexistent value is the

same as a key with an extant value. Perhaps more interesting, however, is that without

the Bloom filter dTable, the linear dTable configuration actually does better under the

reference workload, with nonexistent values. In this configuration, keys that are never

set and keys with nonexistent values must both be looked up in linear dTables – while

in the Bloom filter configuration, the Bloom filter can nearly always reject keys that are

never set without consulting a linear dTable. The linear dTable performs so similarly when

98

looking up these two kinds of keys that a side effect of nonexistent values on overlay

dTables actually improves performance by more than the overhead: a nonexistent value

is authoritative, and when it encounters one, an overlay dTable stops looking for the key

and returns without checking any older dTables. The oracle data store, on the other hand,

forces the overlay to always check all dTables for these keys, since it does not contain any

nonexistent values to stop the lookups early. (Incidentally, it seems entirely plausible that

this effect would occur in real workloads, under the assumption that recently-deleted keys

are the most likely kind of nonexistent keys to be looked up.)

3.7.4 Reconfiguring Anvil

Many of Anvil’s dTable modules do their work on single columns at a time, so they can

best be used when Anvil is configured as a column-based store. Other recent work propos-

ing column stores has turned to TPC-H [57], or variants of it, to show the advantages of the

approach. However, being a back-end data store and not a DBMS in its own right, Anvil

provides no structured query language. Although we have connected it to SQLite to run the

TPC-C benchmark, SQLite is a thoroughly row-based system. Thus, in order to demon-

strate how a column-based Anvil configuration can be optimized for working with partic-

ular data, we must build our own TPC-H-like benchmark, as in previous work [17, 43].

We adapt the method of Harizopoulos et al. [17], as it does not require building a query

language or relational algebra.

We create the lineitem table from TPC-H, arranged as either a row store or a column

store. This choice is completely controlled by the configuration blurb we use. We populate

the table with the data generated by the TPC dbgen utility. In the column store version, we

use an appropriate dTable configuration for each column: a fixed-size dTable for columns

storing floating point values, for instance, or an exception dTable above a small-integer

99

 105

 90

 75

 60

 45

 30

 15

 0
16151413121110987654321R16R1

E
la

ps
ed

 ti
m

e
(s

ec
)

of attributes selected

Figure 3.17: Time to select different numbers of columns from a row store (left bars; 1
and 16 columns) and a column store (right bars).

dTable above a fixed-size dTable for columns storing mostly small integers. (We can ac-

tually use an array dTable as the fixed-size dTable, since the keys are contiguous.) After

populating the table, the column store is 807 MiB while the row store is 1008 MiB. (Using

only linear dTables and without further configuration, the column store is 1334 MiB.) We

then iterate through all the rows in the table, performing the Anvil equivalent of a simple

SQL query of the form:

SELECT C1, C2, ... FROM lineitem WHERE pred(C1);

We vary the number of selected columns, using a predicate selecting 10% of the rows.

We use the cTable iterator projection feature to efficiently select only the columns of in-

terest in either a row or column store. The results, shown in Figure 3.17, are fairly similar

to previous work [17], demonstrating that Anvil’s modular design provides effective ac-

cess to the same tradeoffs. For this test, it is important to drop both application-level and

system-level caches between trials: otherwise, the (read-only) data is quickly cached in

its entirety, and the CPU overhead of processing many more dTables in the column store

dominates the “I/O” time after only two columns.

Sliding Window dTable Choosing a row or column store can tailor an Anvil configura-

tion to specific query patterns, but dTable configurations can also be tuned to specific data.

Many data sets, for instance, have the property that a few values are very common, and

100

Digest (s) Lookup (s) Scan (s) Size (MiB)
linear 3.7 53.6 7.9 209.8
sliding window 15.5 44.5 7.3 69.8

Figure 3.18: Sliding window dTable benchmark: various tasks and data file sizes with a
sliding window dTable configuration or a plain linear dTable.

that many other values are uncommon. The sliding window dTable detects this and stores

spatially local duplicate values only once, reducing the size of such data sets on disk. To

evaluate its utility, we run a benchmark similar to the one used for the partition dTable.

(In fact, that test was designed for the sliding window dTable, but reused for the partition

dTable.) We use a managed dTable with a sliding window dTable, itself with fixed and

indexed dTables for its key and value stores, respectively. We populate this configuration

with 4 million values between 75 and 85 bytes, 75% of them being chosen from a set of

10 “popular” 80-byte values and the remaining 25% being generated randomly. We then

digest the log, causing the sliding window dTable to compress that data and create the sub-

ordinate fixed and indexed dTables. Finally we do the same 1 million random key lookups

and three forward iterator scans as before. In this version of the test, unlike the partition

dTable version, we drop the file caches before each of these measurements: otherwise, we

will not be able to see the difference in I/O time because the data was just written and is

still in the caches. For comparison, we also run the same benchmark with a plain managed

+ linear dtable configuration.

Figure 3.18 shows the resulting times and data file sizes. Predictably, the sliding win-

dow dTable reduces the file sizes to about 33% of the uncompressed size, since nearly 75%

of the values can be eliminated but there is some overhead to store pointers from the keys

to the values. The time for the linear scans and random key lookups improves by 7.6%

and 17.0%, respectively, showing that the decreased data size is beneficial when it must

be read from disk. (The same tests, without dropping the caches first, instead show mod-

101

erate performance degradation due to the additional CPU time involved.) Most striking,

however, is that the time to digest – that is, the running time of the create procedure –

is 4.2 times as large. Compressing data in this way involves non-trivial computation, and

the price is paid at create time. Accordingly, this sort of expensive compression should

only be used when the disk space or I/O time savings are required.

Originally, the sliding window dTable’s create method was even more inefficient,

due to one of Anvil’s core design decisions: create methods accept iterators, and pull

the data from them. Furthermore, many create methods (for instance those of the fixed

and indexed dTables) scan the input iterator more than once. At first, the wrapper iterators

that the sliding window dTable passed to the underlying create methods actually per-

formed the compression. The data would therefore be compressed once for each scan, per

subordinate dTable – five times in the above configuration (twice for the fixed dTable, and

three times for the indexed dtable). While this design is very flexible for create methods,

allowing them to avoid writing temporary files and easily precalculate summary informa-

tion for use while writing their data files, it does not mix well with expensive conversions

like compression. The sliding window dTable therefore opts to write temporary files any-

way, allowing it to do the expensive compression step only once. The iterators it passes to

the underlying create methods then merely read the temporary files, which is much less

expensive than compressing the data. This pattern would likely be required for any other

expensive conversions as well, for the same reason.

3.7.5 Digesting and Combining

Figure 3.19 shows the number of rows inserted per second (in thousands) while creating

the row-based database used for the first two columns of Figure 3.17. Figure 3.20 shows

the same operation, but with digests and combines run in the foreground, blocking other

102

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

R
ow

s/
se

c
(x

10
00

)

Time (sec)

Figure 3.19: Rows inserted per second over
time while creating the row-based TPC-H
database, with digests and combines done
in the background.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90

R
ow

s/
se

c
(x

10
00

)

Time (sec)

Figure 3.20: Rows inserted per second over
time while creating the row-based TPC-
H database. The discontinuities correspond
to digests and combines done in the fore-
ground.

progress. (Note that the x axes have different scales.) The periodic downward spikes in

Figure 3.20 are due to digests, which take a small amount of time and therefore lower

the instantaneous speed briefly. The longer periods of inactivity correspond to combine

operations, which vary in length depending on how much data is being combined. In Fig-

ure 3.19, since these operations are done in the background, progress can still be made

while they run.

Insertions become slower after each digest, since the row-based store must look up the

previous row data in order to merge the new column data into it. (It does not know that the

rows are new, although it finds out by doing the lookup.) After the combines, the speed

increases once again, as there are fewer dTables to check for previous values. The effect is

clearer when digests and combines are done in the foreground, as in Figure 3.20.

In this test, running digests and combines in the background takes about 27% less

time than running them in the foreground. Most of our other benchmarks do not show

such a significant improvement from background digests and combines; while there is

still generally an improvement, it is much more modest (on the order of 5%). For this

experiment, we configured the digests to occur with a very high frequency, to force them

to occur enough times to have a performance effect on such a short benchmark. When a

103

Configuration Time (s) Overhead
No thread safety 77.6 N/A
C library thread safe, Anvil not 83.6 7.7%
Anvil thread-safe, C library not 88.8 14.4%
Both thread-safe 93.4 20.4%

Figure 3.21: Thread-safety overheads for TPC-H load: times to load the TPC-H data into
Anvil, using foreground digesting and combining, with and without C library and internal
Anvil thread-safety overheads.

background digest or combine is already in progress and the next digest is requested, the

new digest request is ignored and the original background operation proceeds unchanged.

As a result, fewer digests, and thus also fewer combines, occur overall. In more realistic

configurations, background operations would overlap much less frequently with digest

requests, and so the overall amount of work done would be closer to the same.

The entire database creation takes Anvil 67.9 seconds with background digesting and

combining and 93.4 seconds without, both in delay mode. In comparison, loading the

same data into unmodified SQLite in full and normal modes takes about 100 seconds,

and about 64 seconds in async mode. Even though Anvil spends a large amount of time

combining dTables, the managed dTable’s digesting and combining schedule keeps this

overhead in check. Further, the savings gained by contiguous disk access are larger than

these overheads, and Anvil creates the database nearly as quickly as unmodified SQLite’s

async mode does.

Finally, as a measurement of the overhead imposed by thread safety – both that internal

to Anvil and that automatically imposed by the C library after the first thread is created –

we also run this experiment without even creating the background thread, and with Anvil’s

thread safety features disabled. The results of this experiment are shown in Figure 3.21.

The overheads are significant: about 20% for both together. Although we have not done so,

it should be possible to use a separate process rather than a thread for Anvil’s background

digesting and combining. If the application does not itself require thread-safe access, then

104

Transaction type Time (s)
Basic 61.9
Abortable 85.5
Abortable (no optimization) 99.9

Figure 3.22: Comparison of Anvil’s basic and abortable transactions for a simple test in-
serting 40 million keys. Without the optimization, abortable transactions are much slower.

one or both of these overheads could likely be eliminated in this way.

3.7.6 Abortable Transactions

Section 3.6 describes Anvil’s abortable transaction mechanism, and notes that although it

is elegantly modular, it does introduce additional cost compared to Anvil’s basic transac-

tions. In this section we evaluate the performance of this mechanism in two ways: first,

by comparing the performance of basic transactions and abortable transactions in isola-

tion, and second, by measuring the performance of basic transactions in the presence of

abortable transactions.

For the first benchmark, we use a simple dTable configuration consisting of a managed

dTable and linear dTable, and insert 40 million random keys and values. During the test

we also run digest and combine operations, and periodically filter the system journal. We

run three variants of the test: one where all insertions occur in basic transactions, and

two where they are instead inserted using abortable transactions – one with the journal

dTable optimization (§3.6) and one without. The results appear in Figure 3.22; abortable

transactions are about 38% slower when using the optimization, and 61% without it.

The difference the optimization makes provides some insight into where the remain-

ing cost of abortable transactions lies; it is primarily the cost to perform the rollover in

memory. The data written to the disk is nearly identical, save one small entry to record the

rollover event when committing an abortable transaction. A simple experiment confirmed

105

this hypothesis: we disable the rollover itself, but still perform all the other work associated

with abortable transactions, and find that the resulting system (while broken) performs as

well as the basic version. (Technically, the rollover is not the additional work required for

abortable transactions – the additional work is the initial insertions into the per-transaction

journal dTables. The insertions done as part of the rollover would have been done anyway

as part of a basic transaction.)

Based on the design of abortable transactions, and the results of the previous bench-

mark, we expect that the performance of basic transactions should be unaffected by the

presence of abortable transactions. To test this, we run a series of very similar benchmarks,

varying the proportion of basic and abortable transactions from 0 to 100% (in increments

of 10%). We compute the average time to complete each type of transaction, and find that,

as expected, they are invariant even as the proportions vary.

3.7.7 ACID Transactions

The ACID transaction dTable introduces still more cost on top of abortable transactions;

to measure this overhead, we run a fourth variant of the previous benchmark, adding the

ACID transaction dTable on top of abortable transactions. Since this benchmark uses only

one transaction at a time, and never performs reads, it does not exercise the ACID trans-

action dTable’s ability to abort transactions. (Separate correctness-checking unit tests do,

however.) The benchmark does, however, measure the overhead involved in keeping the

per-transaction and global state used to detect conflicting transactions. The results are

shown in Figure 3.23.

While hardly negligible, the cost is within reason at about 26% overhead – less than

that introduced by abortable transactions. Compared directly to using only basic trans-

actions, the overhead for full ACID transactions is about 74%. There is likely room for

106

Transaction type Time (s)
Abortable 85.5
ACID 107.4

Figure 3.23: Performance of Anvil’s ACID transaction dTable using the same benchmark
as Figure 3.22, compared to the simpler abortable transactions upon which it builds.

improvement here, potentially by reducing the time spent looking up per-transaction state

with more refined data structures. Even as it stands, this does not seem like an unaccept-

able cost for this feature: on the DBT2 benchmark, for example, Anvil is 5.3 times faster

than the original back end; even conservatively assuming that SQLite with Anvil ACID

transactions would be uniformly 74% slower, it would still be over 3 times faster than the

original back end. Plus, because it is a modular feature, it is an optional cost when full

ACID semantics are not required.

3.7.8 Consistency and Durability Tests

To test the correctness of Anvil’s consistency mechanisms, we set up a column store of 500

rows and 50 columns. We store an integer in each cell of the table and initialize all 25,000

cells to the value 4000. Thus, the table as a whole sums to 100 million. We then pick a cell

at random and subtract 100 from it, and pick 100 other cells at random and add 1 to each.

We repeat this operation 2000 times, and end the Anvil transaction. We then run up to 500

such transactions, which would take about 3 minutes if we allowed it to complete.

Instead, after initializing the table, we schedule a kernel module to load after a random

delay of between 0 and 120 seconds. The module, when loaded, immediately reboots the

machine without flushing any caches or completing any in-progress I/O requests. When

the machine reboots, we allow ext3 to recover its journal, and then start up Anvil so that

it can recover as well. We then scan the table, summing the cells to verify that they are

consistent. The consistency check also produces a histogram of cell values so that we can

107

subjectively verify that progress consistent with the amount of time the test ran before

being interrupted was made. (The longer the test runs, the more distributed the histogram

will tend to be, up to a point.)

During each transaction, the table is only consistent about 1% of the time: the rest

of the time, the sum will fall short of the correct total. As long as the transactions are

working correctly, these intermediate states should never occur after recovery. Further, the

histograms should approximately reflect the amount of time each test ran. The result of

over 1000 trials matches these expectations.

Finally, as evidence that the test itself can detect incorrectly implemented transactions,

we note that it did in fact detect several small bugs in Anvil. One, for instance, occasionally

allowed transaction data to “leak” out before its containing transaction committed. The

test generally found these low-frequency bugs after only a few dozen trials, suggesting

that it is quite sensitive to transaction failures. It is worth noting that these bugs were all

specific to the ext3 version of the Anvil transaction library, and were failures to correctly

specify the desired dependencies via the implicit ext3 mechanisms discussed earlier. The

explicitly-specified dependencies in the Featherstitch version were not affected.

As a durability test, we run a simpler test that inserts a random number of keys into

a managed dTable, each in its own durable transaction. We also run digest and combine

operations occasionally during the procedure. After the last key is inserted, and its transac-

tion reported as durable, we use the reboot module mentioned above to reboot the machine.

Upon reboot, we verify that the contents of the dTable are correct. As this experiment is

able to specifically schedule the reboot for what is presumably the worst possible time

(immediately after a report of durability), we only run 10 trials by hand and find that dura-

bility is indeed provided. Running the same test without requesting transaction durability

reliably results in a consistent but outdated dTable.

108

3.8 Summary

Anvil builds structured data stores by composing the desired functionality from sets of

simple dTable modules. Simple configuration changes can substantially alter how Anvil

stores data, and when unique storage strategies are needed, it is easy to write new dTables.

The overhead incurred by Anvil’s modularity, while not completely negligible, is small in

comparison to the performance benefits it can offer, both due to its use of separate write-

optimized and read-only dTables and to the ability to use specialized dTables for efficient

data storage. Our prototype implementation of Anvil is faster than SQLite’s original back

end based on B-trees when running the TPC-C benchmark with DBT2, showing that its

performance is reasonable for realistic workloads. Further, we can easily customize it as

a column store for a benchmark loosely based on TPC-H, showing that optimizing it for

specific data is both simple and effective. Even the implementation of abortable transac-

tions was simplified by this modular design, as the pieces required to isolate transactions

and commit them atomically were readily available in modular form.

109

Chapter 4

Conclusion

This work investigates two major types of data storage software systems, file systems and

databases, and explores ways in which each can be made more modular while preserving

the essential property of consistency. We have taken two different approaches to achieve

this modularity: first, in Featherstitch, we introduce a new first-class object allowing mod-

ules to communicate write ordering requirements between each other while remaining

only loosely coupled. Second, in Anvil, we isolate all writing in the system to a small

handful of dedicated modules, allowing most modules to deal exclusively with read-only

data and to themselves be divided into read-only and create-only parts. These approaches

have both been successful at dividing into modules the data storage system to which we

have applied them, and can even offer performance benefits as well – giving both users

and system designers more flexibility and control over their data.

Featherstitch’s explicit patch abstraction provides a new way for storage system imple-

mentations to formalize the “write-before” relationship among buffered changes to stable

storage. This separates the specification and enforcement of the desired dependencies,

and allows many modules and even user applications to cooperate loosely while pro-

viding strong consistency guarantees. The resulting modular design also simplifies the

110

implementation of consistency mechanisms like journaling and soft updates, and allows

user applications to specify custom dependencies, via the patchgroup module, in addition

to those generated within the storage system. Using the patchgroup interface allows the

buffer cache more freedom to reorder writes without violating the application’s needs,

while simultaneously freeing the application from having to micromanage writes to disk.

We present results showing that the performance of our prototype is usually at least as fast

as native Linux file systems that provide similar consistency guarantees, and that using the

patchgroup interface can significantly reduce both the total time and the number of writes

required for a realistic workload.

Anvil, on the other hand, takes virtually the opposite approach: rather than thread-

ing primitives that deal with consistency throughout the system, most of the system is

made read-only to sidestep consistency problems altogether. Dedicated writable dTables

handle all writes in the system, and special unifying dTables combine these with the read-

only dTables to provide the illusion of unified writable stores. Anvil builds complex data

stores by composing the desired functionality from sets of simple dTable modules, allow-

ing small configuration changes to substantially alter how it stores data and making it easy

to add unique storage strategies by writing new dTables. While not completely negligible,

the overhead incurred by this modular design is small in comparison to the performance

and flexibility benefits it can offer. Our prototype implementation of Anvil is faster than

SQLite’s original back end based on B-trees when running the TPC-C benchmark with

DBT2, showing that its performance is reasonable for realistic workloads. Further, we can

easily customize it as a column store for a benchmark loosely based on TPC-H, showing

that optimizing it for specific data is both simple and effective. Even the implementation of

ACID transactions was simplified by this modular design, as the pieces required to isolate

transactions and commit them atomically were readily available in modular form.

In conclusion, these prototype systems demonstrate that modularity need not be es-

111

chewed in data storage systems like file systems and database back ends in order to provide

consistency. Rather, they can be decomposed into modular components without substan-

tial performance penalties, and without sacrificing the critical consistency properties of the

system. Finally, these systems show that modular designs can dramatically increase the

ability of these systems to be reconfigured and customized, providing both performance

improvements and useful new features with minimal incremental effort.

112

Bibliography

[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression and
execution in column-oriented database systems. In Proc. SIGMOD ’06, pages 671–
682, 2006.

[2] Eric Anderson, Martin Arlitt, Charles B. Morrey III, and Alistair Veitch. DataSeries:
an efficient, flexible data format for structured serial data. SIGOPS Operating Sys-
tems Review, 43(1):70–75, 2009.

[3] Don Steve Batory, J. R. Barnett, Jorge F. Garza, Kenneth Paul Smith, K. Tsukuda,
C. Twichell, and T. E. Wise. GENESIS: An extensible database management system.
IEEE Transactions on Software Engineering, 14(11):1711–1730, 1988. ISSN 0098-
5589.

[4] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large
ordered indices. In SIGFIDET Workshop, pages 107–141, July 1970.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970. ISSN 0001-0782.

[6] Peter Alexander Boncz. Monet: A Next-Generation DBMS Kernel for Query-
Intensive Applications. PhD thesis, Universiteit van Amsterdam, Amsterdam, The
Netherlands, May 2002.

[7] Nathan Christopher Burnett. Information and Control in File System Buffer Manage-
ment. PhD thesis, University of Wisconsin—Madison, July 2006.

[8] CDB Constant DataBase. http://cr.yp.to/cdb.html (retrieved January
2010).

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

113

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a
distributed storage system for structured data. In Proc. 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), pages 205–218, Seattle, Washing-
ton, November 2006.

[10] Brian Cornell, Peter A. Dinda, and Fabián E. Bustamante. Wayback: A user-level
versioning file system for Linux. In Proc. 2004 USENIX Annual Technical Confer-
ence, FREENIX Track, pages 19–28, Boston, Massachusetts, June 2004.

[11] DBT2. http://sourceforge.net/projects/osdldbt/ (retrieved Jan-
uary 2010).

[12] Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Journal-guided resynchronization for software RAID. In Proc. 4th USENIX Con-
ference on File and Storage Technologies (FAST ’05), pages 87–100, San Francisco,
California, December 2005.

[13] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gor-
don Woodhull. Graphviz - open source graph drawing tools. Graph Drawing, pages
483–484, 2001.

[14] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los Reyes, Shant
Hovsepian, Andrew Matsuoka, and Lei Zhang. Generalized file system dependen-
cies. In Proc. SOSP ’07, pages 307–320, 2007.

[15] Eran Gal and Sivan Toledo. A transactional Flash file system for microcontrollers.
In Proc. 2005 USENIX Annual Technical Conference, pages 89–104, Anaheim, Cal-
ifornia, April 2005.

[16] Gregory R. Ganger, Marshall K. McKusick, Craig A. N. Soules, and Yale N. Patt.
Soft updates: A solution to the metadata update problem in file systems. ACM Trans-
actions on Computer Systems, 18(2):127–153, May 2000.

[17] Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and Samuel Madden. Perfor-
mance tradeoffs in read-optimized databases. In Proc. VLDB ’06, pages 487–498,
2006.

[18] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
OLTP through the looking glass, and what we found there. In Proc. SIGMOD ’08,

114

pages 981–992, 2008.

[19] John S. Heidemann and Gerald J. Popek. File-system development with stackable
layers. ACM Transactions on Computer Systems, 12(1):58–89, February 1994.

[20] Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS file
server appliance. In Proc. USENIX Winter 1994 Technical Conference, pages 235–
246, San Francisco, California, January 1994.

[21] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M. Briceño,
Russell Hunt, David Mazières, Thomas Pinckney, Robert Grimm, John Jannotti, and
Kenneth Mackenzie. Application performance and flexibility on Exokernel systems.
In Proc. 16th ACM Symposium on Operating Systems Principles, pages 52–65, Saint-
Malô, France, October 1997.

[22] J Katcher. PostMark: A new file system benchmark. Technical Report TR3022,
Network Appliance, 1997. http://tinyurl.com/27ommd (retrieved January
2010).

[23] S. R. Kleiman. Vnodes: An architecture for multiple file system types in Sun UNIX.
In Proc. USENIX Summer 1986 Technical Conference, pages 238–247, Atlanta,
Georgia, 1986.

[24] Nicholas Lester, Alistair Moffat, and Justin Zobel. Efficient online index construction
for text databases. ACM Transactions on Database Systems, 33(3):1–33, 2008. ISSN
0362-5915.

[25] Bruce Lindsay, John McPherson, and Hamid Pirahesh. A data management extension
architecture. SIGMOD Record, 16(3):220–226, 1987. ISSN 0163-5808.

[26] Barbara Liskov and Rodrigo Rodrigues. Transactional file systems can be fast. In
Proc. 11th ACM SIGOPS European Workshop, Leuven, Belgium, September 2004.

[27] David E. Lowell and Peter M. Chen. Free transactions with Rio Vista. In Proc. SOSP
’97, pages 92–101, 1997.

[28] Timothy Mann, Andrew Birrell, Andy Hisgen, Charles Jerian, and Garret Swart. A
coherent distributed file cache with directory write-behind. ACM Transactions on

115

Computer Systems, 12(2):123–164, May 1994.

[29] Marshall K. McKusick and Gregory R. Ganger. Soft updates: A technique for elim-
inating most synchronous writes in the Fast Filesystem. In Proc. 1999 USENIX
Annual Technical Conference, FREENIX Track, pages 1–17, Monterey, California,
June 1999.

[30] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A
fast file system for UNIX. ACM Transactions on Computer Systems, 2(3):181–197,
August 1984.

[31] Kiran-Kumar Muniswamy-Reddy, Charles P. Wright, Andrew Himmer, and Erez
Zadok. A versatile and user-oriented versioning file system. In Proc. 3rd USENIX
Conference on File and Storage Technologies (FAST ’04), pages 115–128, San Fran-
cisco, California, March 2004.

[32] MySQL. http://www.mysql.com/ (retrieved January 2010).

[33] MySQL Internals Custom Engine.
http://forge.mysql.com/wiki/MySQL_Internals_Custom_Engine

(retrieved January 2010).

[34] Edmund B. Nightingale, Peter M. Chen, and Jason Flinn. Speculative execution
in a distributed file system. In Proc. 20th ACM Symposium on Operating Systems
Principles, pages 191–205, Brighton, England, October 2005.

[35] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn.
Rethink the sync. In Proc. 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), pages 1–14, Seattle, Washington, November 2006.

[36] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley db. In Proc. 1999
USENIX Annual Technical Conference, pages 43–43, Monterey, California, June
1999.

[37] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-
structured merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, 1996.

[38] Oracle. http://www.oracle.com/ (retrieved January 2010).

116

[39] Sean Quinlan and Sean Dorward. Venti: a new approach to archival storage. In
Proc. 1st USENIX Conference on File and Storage Technologies (FAST ’02), pages
89–101, Monterey, California, January 2003.

[40] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a
log-structured file system. ACM Transactions on Computer Systems, 10(1):26–52,
February 1992.

[41] David S. H. Rosenthal. Evolving the Vnode interface. In Proc. USENIX Summer
1990 Technical Conference, pages 107–118, Anaheim, California, January 1990.

[42] Russell Sears and Eric Brewer. Stasis: flexible transactional storage. In Proc. 7th
Symposium on Operating Systems Design and Implementation (OSDI ’06), pages
29–44, Seattle, Washington, November 2006.

[43] Russell Sears, Mark Callaghan, and Eric Brewer. Rose: Compressed, log-structured
replication. In Proc. VLDB ’08, August 2008.

[44] Margo I. Seltzer, Gregory R. Ganger, Marshall K. McKusick, Keith A. Smith, Craig
A. N. Soules, and Christopher A. Stein. Journaling versus soft updates: Asyn-
chronous meta-data protection in file systems. In Proc. 2000 USENIX Annual Tech-
nical Conference, pages 71–84, June 2000.

[45] Muthian Sivathanu, Vijayan Prabhakaran, Florentina Popovici, Timothy Denehy, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Semantically-smart disk
systems. In Proc. 2nd USENIX Conference on File and Storage Technologies (FAST
’03), San Francisco, California, March 2003.

[46] Muthian Sivathanu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Somesh Jha. A logic of file systems. In Proc. 4th USENIX Conference on File and
Storage Technologies (FAST ’05), pages 1–15, San Francisco, California, December
2005.

[47] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Database-aware semantically-smart storage. In Proc. 4th
USENIX Conference on File and Storage Technologies (FAST ’05), pages 239–252,
San Francisco, California, December 2005.

[48] Glenn C. Skinner and Thomas K. Wong. “Stacking” Vnodes: A progress report.

117

In Proc. USENIX Summer 1993 Technical Conference, pages 161–174, Cincinnati,
Ohio, June 1993.

[49] Craig A. N. Soules, Garth R. Goodson, John D. Strunk, and Gregory R. Ganger.
Metadata efficiency in versioning file systems. In Proc. 2nd USENIX Conference on
File and Storage Technologies (FAST ’03), pages 43–58, San Francisco, California,
March 2003.

[50] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, Erez Zadok, and Charles P.
Wright. Enabling transactional file access via lightweight kernel extensions. In Proc.
7th USENIX Conference on File and Storage Technologies (FAST ’05), pages 29–42,
San Francisco, California, February 2009.

[51] SQLite. http://www.sqlite.org/ (retrieved January 2010).

[52] Michael Stonebraker and Greg Kemnitz. The POSTGRES next generation database
management system. Communications of the ACM, 34(10):78–92, 1991. ISSN 0001-
0782.

[53] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherni-
ack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil,
Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: a column-oriented
DBMS. In Proc. VLDB ’05, pages 553–564, 2005.

[54] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The end of an architectural era (It’s time for a complete
rewrite). In Proc. VLDB ’07, pages 1150–1160, 2007.

[55] Subversion. http://subversion.tigris.org/ (retrieved January 2010).

[56] TPC-C. http://www.tpc.org/tpcc/ (retrieved January 2010).

[57] TPC-H. http://www.tpc.org/tpch/ (retrieved January 2010).

[58] Theodore Ts’o. Re: [evals] ext3 vs reiser with quotas, December 19 2004. http:
//linuxmafia.com/faq/Filesystems/reiserfs.html (retrieved Jan-
uary 2010).

118

[59] Theodore Ts’o. Delayed allocation and the zero-length file problem. Theodore Ts’o’s
blog. http://tinyurl.com/dy7rgm (retrieved January 2010).

[60] Stephen Tweedie. Journaling the Linux ext2fs filesystem. In Proc. 4th Annual Lin-
uxExpo, Durham, North Carolina, 1998.

[61] UW IMAP toolkit. http://www.washington.edu/imap/ (retrieved January
2010).

[62] Murali Vilayannur, Partho Nath, and Anand Sivasubramaniam. Providing tunable
consistency for a parallel file store. In Proc. 4th USENIX Conference on File and
Storage Technologies (FAST ’05), pages 17–30, San Francisco, California, December
2005.

[63] Mike Waychison. Re: fallocate support for bitmap-based files. linux-ext4 mail-
ing list, June 29 2007. http://www.mail-archive.com/linux-ext4@
vger.kernel.org/msg02382.html (retrieved January 2010).

[64] Till Westmann, Donald Kossmann, Sven Helmer, and Guido Moerkotte. The im-
plementation and performance of compressed databases. SIGMOD Record, 29(3):
55–67, 2000.

[65] Charles P. Wright. Extending ACID Semantics to the File System via ptrace. PhD
thesis, Stony Brook University, May 2006.

[66] Charles P. Wright, Michael C. Martino, and Erez Zadok. NCryptfs: A secure and
convenient cryptographic file system. In Proc. 2003 USENIX Annual Technical Con-
ference, pages 197–210, San Antonio, Texas, June 2003.

[67] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan, David P. Quigley,
Erez Zadok, and Mohammad Nayyer Zubair. Versatility and Unix semantics in
namespace unification. ACM Transactions on Storage, March 2006.

[68] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathni. Using
model checking to find serious file system errors. In Proc. 6th Symposium on Operat-
ing Systems Design and Implementation (OSDI ’04), pages 273–288, San Francisco,
California, December 2004.

119

[69] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: a lightweight, general sys-
tem for finding serious storage system errors. In Proc. 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), pages 131–146, Seattle, Washing-
ton, November 2006.

[70] Erez Zadok and Jason Nieh. FiST: A language for stackable file systems. In Proc.
2000 USENIX Annual Technical Conference, pages 55–70, June 2000.

[71] Erez Zadok, Ion Badulescu, and Alex Shender. Extending File Systems Using Stack-
able Templates. In Proc. 1999 USENIX Annual Technical Conference, pages 57–70,
Monterey, California, June 1999.

[72] ZFS Space Maps. http://blogs.sun.com/bonwick/entry/space_maps (re-
trieved January 2010).

[73] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compres-
sion. IEEE Transactions on Information Theory, 23(3):337–343, May 1977.

120

	Introduction
	Featherstitch
	Featherstitch Introduction
	Related Work
	Patches
	Disk Behavior
	Dependencies
	Dependency Implementation
	Examples
	Patch Implementation
	Optimizations
	Discussion
	Debugging

	Modules
	UHFS
	ext2, UFS, and waffle
	Journal
	Buffer Cache
	Loopback

	Patchgroups
	Interface and Implementation
	Case Studies

	Implementation
	Evaluation
	Methodology
	Benchmarks and Linux Comparison
	Correctness
	Patchgroups
	Evaluation Summary

	Summary

	Anvil
	Anvil Introduction
	Related Work
	Design
	dTables
	Data Unification
	Columns
	Discussion

	Transaction Library
	Consistency
	Durability
	System Journal

	dTables
	Basic Storage dTables
	Performance dTables
	Unifying dTables
	Specialized dTables
	Exception dTable
	Existential dTable
	Example Configurations

	Abortable and ACID Transactions
	Concurrent Access

	Evaluation
	Conventional Workload
	Microbenchmarks
	Nonexistent Values
	Reconfiguring Anvil
	Digesting and Combining
	Abortable Transactions
	ACID Transactions
	Consistency and Durability Tests

	Summary

	Conclusion
	References

